Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 074701    DOI: 10.1088/1674-1056/24/7/074701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids

Li Feng-Chen (李凤臣), Wang Lu (王璐), Cai Wei-Hua (蔡伟华)
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  

A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives.

Keywords:  turbulent drag reduction      large eddy simulation      viscoelastic fluid      subgrid-scale model  
Received:  14 January 2015      Revised:  19 March 2015      Accepted manuscript online: 
PACS:  47.27.E- (Turbulence simulation and modeling)  
  47.50.-d (Non-Newtonian fluid flows)  
  47.27.ep (Large-eddy simulations)  
Fund: 

Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).

Corresponding Authors:  Li Feng-Chen     E-mail:  lifch@hit.edu.cn

Cite this article: 

Li Feng-Chen (李凤臣), Wang Lu (王璐), Cai Wei-Hua (蔡伟华) A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids 2015 Chin. Phys. B 24 074701

[1] Toms B A 1949 Proceedings of the First International Congress of Rheology (Amsterdam: North Holland) p. 135
[2] Burger E D, Munk W R and Wahl H A 1982 J. Pet. Technol. 34 377
[3] Walker D T and Tiederman W G 1990 J. Fluid Mech. 218 377
[4] Warholic M D, Schmidt G M and Hanratty T J 1999 J. Fluid Mech. 338 1
[5] Li F C, Kawaguchi Y, Segawa T and Hishida K 2005 Phys. Fluids 17 075104
[6] Li F C, Yu B, Wei J J and Hishida K 2008 Int. J. Heat Mass Transfer 51 835
[7] Wei J J, Kawaguchi Y, Li F C, Yu B, Zakin J L, Hart D J and Zhang Y 2009 Int. J. Heat Mass Transfer 52 3547
[8] Bewersdorff H W and Ohlendorf D 1988 Colloid. Polym. Sci. 266 941
[9] Sureshkumar R, Beris A N and Handler R A 1997 Phys. Fluids 9 743
[10] Dimitropoulos C D, Sureshkumar R and Beris A N 1998 J. Non-Newtonian Fluid Mech. 79 433
[11] Dimitropoulos C D, Sureshkumar R, Beris A N and Handler R A 2001 Phys. Fluids 13 1016
[12] Angelis E D, Casciola C M and Piva R 2002 Comput. Fluids 31 495
[13] Yu B and Kawaguchi Y 2003 Int. J. Heat Fluid Fl. 24 491
[14] Ptasinski P K, Boersma B J, Nieuwstadt F T M, Hulsen M A, van den Brule B H A A and Hunt J C R 2003 J. Fluid Mech. 490 251
[15] Min T, Yoo J Y, Choi H and Joseph D D 2003 J. Fluid Mech. 486 213
[16] Li C F, Gupta V K, Sureshkumar R and Khomami B 2006 J. Non-Newtonian Fluid Mech. 139 177
[17] Dimitropoulos C D, Dubief Y, Shaqfeh E S G and Moin P 2006 J. Fluids Mech. 566 153
[18] Tamano S, Itohm M, Hoshizaki K and Yokota K 2007 Phys. Fluids 19 075106
[19] Cai W H, Li F C and Zhang H N 2010 J. Fluids Mech. 665 334
[20] Tsukahara T, Kawase T and Kawaguchi Y 2011 Int. J. Heat Fluid Fl. 32 529
[21] Cruz D O A and Pinho F T 2003 J. Non-Newtonian Fluid Mech. 144 109
[22] Pinho F T 2003 J. Non-Newtonian Fluid Mech. 114 149
[23] Cruz D O A, Pinho F T and Resende P R 2004 J. Non-Newtonian Fluid Mech. 121 127
[24] Masoudian M, Kim K, Pinho F T and Sureshkumar R 2013 J. Non-Newtonian Fluid Mech. 202 99
[25] Smagorinsky J 1963 Mon. Weather Rev. 91 99
[26] Lesieur M and Metais O 1996 Annu. Rev. Fluid. Mech. 28 45
[27] Germano M, Piomelli U, Moin P and Cabot W H 1991 Phys. Fluids A 3 1760
[28] Kobayashi H 2005 Phys. Fluids 17 045104
[29] Kobayashi H 2006 Phys. Fluids 18 045107
[30] Kobayashi H 2008 Phys. Fluids 20 015102
[31] Ohta T and Miyashita M 2014 J. Non-Newtonian Fluid Mech. 206 29
[32] Domaradzki J A and Saiki E M 1997 Phys. Fluids 9 2148
[33] Stolz S and Adams N A 1999 Phys. Fluids 11 1699
[34] Stolz S, Adams N A and Klesiser L 2001 Phys. Fluids 13 997
[35] Stolz S, Adams N A and Klesiser L 2001 Phys. Fluids 13 2985
[36] Hickel S, Adams N A and Domaradzki J A 2006 J. Comput. Phys. 213 413
[37] Pruett C D 2000 AIAA J. 38 1634
[38] Pruett C D, Thomas B C, Grosch C E and Gatski T B 2006 Phys. Fluids 18 028104
[39] Thais L, Tejada-Martinez A E, Gatski T B and Mompean G 2010 Phys. Fluids 22 013103
[40] Wang L, Cai W H and Li F C 2014 Chin. Phys. B 23 034701
[41] Roggale R S and Moin P 1984 Annu. Rev. Fluid Mech. 16 99
[42] Hunt J C R, Wray A and Moin P 1988 Center for Turbulence Research CTR-S88 193
[43] Dubief Y and Delcayre F 2000 J. Turbulence 1 N11
[44] Chakraborty P, Balachandar S and Adrian R J 2005 J. Fluid Mech. 535 189
[45] Tanahashi M, Miyauchi T and Yoshida T 1996 Proceedings of 9th International Symposium on Transport Phenomena 2 p. 1256
[46] Tanahashi M, Miyauchi T and Matsuoka K 1997 Proceedings of Second International Symposium on Turbulence, Heat and Mass Transfer p. 461
[47] Min T, Choi H and Jung Y Y 2003 J. Fluid Mech. 492 91
[48] Li C F, Sureshkumar R and Khomami B 2006 J. Non-Newtonian Fluid Mech. 140 23
[49] Housiadas K D and Beris A N 2003 Phys. Fluids 15 2369
[50] Sibilla S and Beretta C P 2005 Fluids Dyn. Res. 37 183
[51] Yu B, Li F C and Kawaguchi Y 2004 Int. J. Heat Fluid Fl. 25 961
[52] Tsukahara T, Ishigami T, Yu B and Kawaguchi Y 2011 J. Turbul. 12 1
[53] Beris A N, Avgousti M and Souvaliotis A 1992 J. Non-Newtonian Fluid Mech. 44 197
[54] Kawaguchi Y, Wei J J, Yu B and Feng Z P 2003 Proceedings of the Fluids Engineering Division Summer Meeting (Honolulu)
[55] Suzuki H, Ishihara K and Usui H 2001 Proceedings 3rd Pacific Rim Conference on Rheology (Vancouver)
[56] Chen S Y, Doolen G D, Kraichnan R H and She Z S 1993 Phys. Fluids 5 458
[57] Vaithianathan T, Robert A, Brasseur J G and Collins L R 2006 J. Non-Newtonian Fluid Mech. 140 3
[58] Li F C, Cai W H, Zhang H N and Wang Y 2012 Chin. Phys. B 21 114701
[59] Kline S J 1967 J. Fluid Mech. 30 741
[60] Min T, Yoo J Y and Choi H 2001 J. Non-Newtonian Fluid Mech. 100 27
[61] Siggia E D 1981 J. Fluid Mech. 107 375
[62] Douady S, Couder Y and Brachet M E 1991 Phys. Rev. Lett. 67 983
[63] Yu B and Kawaguchi Y 2006 Int. J. Heat Fluid Fl. 27 887
[64] Fukagata K, Iwamoto K and Kasagi N 2002 Phys. Fluids 14 L73
[1] Large eddy simulations of a triangular jet and its counterpart through a chamber
Xiu Xiao(肖秀), Guo-Chang Wang(王国昌), Min-Yi Xu(徐敏义), Jian-Chun Mi(米建春). Chin. Phys. B, 2020, 29(6): 064701.
[2] Shock oscillation in highly underexpanded jets
Xiao-Peng Li(李晓鹏), Rui Zhou(周蕊), Xiao-Ping Chen(陈小平), Xue-Jun Fan(范学军), Guo-Shan Xie(谢国山). Chin. Phys. B, 2018, 27(9): 094705.
[3] Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波). Chin. Phys. B, 2016, 25(9): 094701.
[4] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
[5] Newtonian heating effects in three-dimensional flow of viscoelastic fluid
A. Qayyum, T. Hayat, M. S. Alhuthali, H. M. Malaikah. Chin. Phys. B, 2014, 23(5): 054703.
[6] Large eddy simulations of a circular orifice jet with and without a cross-sectional exit plate
Zhang Jian-Peng (张健鹏), Xu Min-Yi (徐敏义), Mi Jian-Chun (米建春). Chin. Phys. B, 2014, 23(4): 044704.
[7] Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow
Zhang Hong-Na (张红娜), Li Feng-Chen (李凤臣), Cao Yang (曹阳), Kunugi Tomoaki, Yu Bo (宇波). Chin. Phys. B, 2013, 22(2): 024703.
[8] Lattice Boltzmann simulation of transverse wave travelling in Maxwell viscoelastic fluid
Li Hua-Bing (李华兵), Fang Hai-Ping (方海平). Chin. Phys. B, 2004, 13(12): 2087-2090.
No Suggested Reading articles found!