Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 075205    DOI: 10.1088/1674-1056/24/7/075205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Using a Mach–Zehnder interferometer to deduce nitrogen density mapping

F. Boudaoud, M. Lemerini
Department of Physics, University Abou Bekr Belkaid, Tlemcen, Algeria
Abstract  This work presents an optical method using the Mach–Zehnder interferometer. We especially diagnose a pure nitrogen gas subjected to a point to plane corona discharge, and visualize the density spatial map. The interelectrode distance equals 6 mm and the variation of the optical path has been measured at different pressures: 220 Torr, 400 Torr, and 760 Torr. The interferograms are recorded with a CCD camera, and the numerical analysis of these interferograms is assured by the inverse Abel transformation. The nitrogen density is extracted through the Gladstone–Dale relation. The obtained results are in close agreement with values available in the literature.
Keywords:  Mach-Zehnder interferometer      Gladstone-Dale equation      Abel inversion      corona discharge  
Received:  05 December 2014      Revised:  16 February 2015      Accepted manuscript online: 
PACS:  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.38.-r (Laser-plasma interactions)  
  42.40.Kw (Holographic interferometry; other holographic techniques)  
  42.30.-d (Imaging and optical processing)  
Corresponding Authors:  F. Boudaoud     E-mail:  fethiaboudaoud@yahoo.fr

Cite this article: 

F. Boudaoud, M. Lemerini Using a Mach–Zehnder interferometer to deduce nitrogen density mapping 2015 Chin. Phys. B 24 075205

[1] Shakher C and Nirala A K 1999 Opt. Laser Eng. 31 455
[2] Rosui N, Ralea M, Popescu I M, Iova I, Paraschiv R and Mircea D 1994 Appl. Opt. 3 859
[3] Rosui N, Ralea M, Foca M, Mircea D, Iova I and Nagy G 1992 Nat. Conf. Phys. (Iasi, Romania) p. 100
[4] Mayinger Fand Feldmann 2001 Optical Measurements: Techniques and Application (2nd Edn.) (Berlin: Springer)
[5] Rabat H and C De Izarra 2004 J. Phys. D: Appl. Phys. 37 2371
[6] Lee B H, Kim Y H, Park K S, Eomoo B, Kim M J, Rho B S and Choi H Y 2012 Sensors 12 2467
[7] Lu P, Men L Q, Sooley K and Chen Q 2009 Appl. Phys. Lett. 94 131110
[8] Lemerini M, Ferouani A K, Medjahdi S I and Belhour S April 2009 International Review on Modeling and Simulations Vol. 2
[9] Ferouani A K, Lemerini M and Belhour S 2010 Plasma Science and Technology 12 2
[10] Pearce W D 1958 Conference On Extremely High Temperatures (Fisher H and Mansur L C Ed.) (New York: Wiley)
[11] Ostrovskaya G V 1976 Phys. Tech. 21 1494
[12] Vest C M 1979 Holographic Interferometry (New York: Wiley)
[13] Pavelek M and Lisca M 1983 Opt. Acta 30 943
[14] Oldenburg D W and Samson J C 1979 J. Opt. Soc. Am. 69 927
[15] Forn G 1984 Thèse De Troisiéme Cycle (Toulouse: Université Paul Sabatier)
[1] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[2] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[3] Review on ionization and quenching mechanisms of Trichel pulse
Anbang Sun(孙安邦), Xing Zhang(张幸), Yulin Guo(郭雨林), Yanliang He(何彦良), and Guanjun Zhang(张冠军). Chin. Phys. B, 2021, 30(5): 055207.
[4] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[5] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[6] Near 100% spectral-purity photons from reconfigurable micro-rings
Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2020, 29(11): 114201.
[7] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[8] Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities
Tongkai Zhang(张桐恺), Yu Zhang(张宇), Qizheng Ji(季启政), Ben Li(李犇), Jiting Ouyang(欧阳吉庭). Chin. Phys. B, 2019, 28(7): 075202.
[9] Fringe visibility and distinguishability in two-path interferometer with an asymmetric beam splitter
Yanjun Liu(刘彦军), Jing Lu(卢竞), Zhihui Peng(彭智慧), Lan Zhou(周兰), Dongning Zheng(郑东宁). Chin. Phys. B, 2019, 28(3): 030303.
[10] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[11] Phase precision of Mach-Zehnder interferometer in PM2.5 air pollution
Duan Xie(谢端), Haifeng Chen(陈海峰). Chin. Phys. B, 2018, 27(7): 070304.
[12] Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer
Li-Jun Li(李丽君), Shun-Shun Gong(宫顺顺), Yi-Lin Liu(刘仪琳), Lin Xu(徐琳), Wen-Xian Li(李文宪), Qian Ma(马茜), Xiao-Zhe Ding(丁小哲), Xiao-Li Guo(郭晓丽). Chin. Phys. B, 2017, 26(11): 116504.
[13] Numerical simulation and experimental validation of direct current air corona discharge under atmospheric pressure
Liu Xing-Hua(刘兴华), He Wei(何为), Yang Fan(杨帆), Wang Hong-Yu(王虹宇), Liao Rui-Jin(廖瑞金), and Xiao Han-Guang(肖汉光) . Chin. Phys. B, 2012, 21(7): 075201.
[14] Compact temperature-insensitive modulator based on silicon microring assistant Mach–Zehnder interferometer
Zhang Xue-Jian (张雪键), Feng Xue (冯雪), Zhang Deng-Ke (张登科), Huang Yi-Dong (黄翊东). Chin. Phys. B, 2012, 21(12): 124203.
[15] A new method of asymmetric Abel inversion for magnetic equilibrium configuration state in tokamaks
Tian Chong-Li(田崇利), Zhou Yan(周艳), Shi Zhong-Bing(石中兵), and Li Ying-Liang(李英量). Chin. Phys. B, 2007, 16(1): 207-209.
No Suggested Reading articles found!