|
|
Near 100% spectral-purity photons from reconfigurable micro-rings |
Pingyu Zhu(朱枰谕)1, †, Yingwen Liu(刘英文)1, †, Chao Wu(吴超)1, Shichuan Xue(薛诗川)1, Xinyao Yu(于馨瑶)1, Qilin Zheng(郑骑林)1, Yang Wang(王洋)1, Xiaogang Qiang(强晓刚)2,1, Junjie Wu(吴俊杰)1, and Ping Xu(徐平)1,3,, ‡ |
1 Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China 2 National Innovation Institute of Defense Technology, AMS, Beijing 100071, China 3 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract We propose an on-chip reconfigurable micro-ring to engineer the spectral-purity of photons. The micro-ring resonator is designed to be coupled by one or two asymmetric Mach–Zehnder interferometers and the coupling coefficients hence the quality-factors of the pump and the converted photons can be dynamically changed by the interferometer’s internal phase-shifter. We calculate the joint-spectrum function and obtain the spectral-purity of photons and Schmidt number under different phases. We show that it is a dynamical method to adjust the spectral-purity and can optimize the spectral-purity of photons up to near 100%. The condition for high-spectral-purity photons is ensured by the micro-ring itself, so it overcomes the trade-off between spectral purity and brightness in the traditional post-filtering method. This scheme is robust to fabrication variations and can be successfully applied in different fabrication labs and different materials. Such high-spectral-purity photons will be beneficial for quantum information processing like Boson sampling and other quantum algorithms.
|
Received: 21 September 2020
Revised: 21 September 2020
Accepted manuscript online: 24 September 2020
|
Fund: the National Basic Research Program of China (Grant Nos. 2017YFA0303700 and 2019YFA0308700), the National Natural Science Foundation of China (Grant Nos. 61632021 and 11690031), and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology). |
Corresponding Authors:
†These authors contributed equally to this work. ‡Corresponding author. E-mail: pingxu520@nju.edu.cn
|
Cite this article:
Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), and Ping Xu(徐平) Near 100% spectral-purity photons from reconfigurable micro-rings 2020 Chin. Phys. B 29 114201
|
[1] |
Spring J B Metcalf B J Humphreys P C Kolthammer W S Jin X M Barbieri M Datta A Thomas-Peter N Langford N K Kundys D Gates J C Smith B J Smith P G R Walmsley I A 2013 Science 339 798 DOI: 10.1126/science.1231692
|
[2] |
|
[3] |
|
[4] |
Eisaman M D Fan J Migdall A Polyakov S V 2011 Rev. Sci. Instrum. 82 071101 DOI: 10.1063/1.3610677
|
[5] |
Loredo J C Zakaria N A Somaschi N Anton C De Santis L Giesz V Grange T Broome M A Gazzano O Coppola G A 2016 Optica 3 433 DOI: 10.1364/OPTICA.3.000433
|
[6] |
Somaschi N Giesz V De Santis L Loredo J C Almeida M P Hornecker G Portalupi S L Grange T Anton C Demory J Gómez C Sagnes I Lanzillotti-Kimura N D Lemaítre A Auffeves A White A G Lanco L Senellart P 2016 Nat. Photon. 10 340 DOI: 10.1038/nphoton.2016.23
|
[7] |
Wang H He Y M Chung T H Hu H Yu Y Chen S Ding X Chen M C Qin J Yang X X Liu R Z Duan Z C Li J P Gerhardt S Winkler K Jurkat J Wang L J Gregersen N Huo Y H Dai Q Yu S Y Hoefling S Lu C Y Pan J W 2019 Nat. Photon. 13 770 DOI: 10.1038/s41566-019-0494-3
|
[8] |
Ding X He Y Duan Z C Gregersen N Chen M C Unsleber S Maier S Schneider C Kamp M Höfling S Lu C Y Pan J W 2016 Phys. Rev. Lett. 116 020401 DOI: 10.1103/PhysRevLett.116.020401
|
[9] |
Sun X X Wang P Sheng B W Wang T Chen Z Y Gao K Li M Zhang J Ge W K Arakawa Y Shen B Holmes M Wang X Q 2019 Quantum Engineering 1 e20 DOI: 10.1002/que2.20
|
[10] |
Arcari M Sollner I Javadi A Hansen S L Mahmoodian S Liu J Thyrrestrup H Lee E Song J D Stobbe S Lodahl P 2014 Phys. Rev. Lett. 113 093603 DOI: 10.1103/PhysRevLett.113.093603
|
[11] |
|
[12] |
Liu Y Y Wu C Gu X W Kong Y C Yu X X Ge R Y Cai X L Qiang X G Wu J J Yang X J Xu P 2020 Opt. Lett. 45 73 DOI: 10.1364/OL.45.000073
|
[13] |
|
[14] |
|
[15] |
|
[16] |
Silverstone J W Bonneau D Ohira K Suzuki N Yoshida H Iizuka N Ezaki M Natarajan C M Tanner M G Hadfield R H Zwiller V Marshall G D Rarity J Obrien J L Thompson M G 2014 Nat. Photon. 8 104 DOI: 10.1038/nphoton.2013.339
|
[17] |
|
[18] |
Wang M Wu R B Lin J T Zhang J H Fang Z W Chai Z F Cheng Y 2019 Quantum Engineering 1 e9 DOI: 10.1002/que2.9
|
[19] |
Azzini S Grassani D Strain M J Sorel M Helt L G Sipe J E Liscidini M Galli M Bajoni D 2012 Opt. Express 20 23100 DOI: 10.1364/OE.20.023100
|
[20] |
|
[21] |
Silverstone J W Santagati R Bonneau D Strain M J Sorel M Obrien J L Thompson M G 2015 Nat. Commun. 6 7948 DOI: 10.1038/ncomms8948
|
[22] |
|
[23] |
Faruque I I Sinclair G F Bonneau D Rarity J G Thompson M G 2018 Opt. Express 26 20379 DOI: 10.1364/OE.26.020379
|
[24] |
Vernon Z Menotti M Tison C C Steidle J A Fanto M L Thomas P Preble S F Smith A M Alsing P M Liscidini M Sipe J E 2017 Opt. Lett. 42 3638 DOI: 10.1364/OL.42.003638
|
[25] |
Wu C Liu Y W Gu X W Xue S C Yu X X Kong Y C Qiang X G Wu J J Zhu Z H Xu P 2019 Chin. Phys. B 28 104221 DOI: 10.1088/1674-1056/ab3f9b
|
[26] |
Wu C Liu Y W Gu X W Yu X X Kong Y C Qiang X G Wu J J Zhu Z H Yang X J Xu P 2020 Sci. China: Phys. Mech. Astron. 63 220362 DOI: 10.1007/s11433-019-1429-1
|
[27] |
|
[28] |
|
[29] |
Engin E Bonneau D Natarajan C M Clark A S Tanner M G Hadfield R H Dorenbos S N Zwiller V Ohira K Suzuki N Yoshida H Iizuka N Ezaki M O’Brien J L Thompson M G 2013 Opt. Express 21 27826 DOI: 10.1364/OE.21.027826
|
[30] |
Azzini S Grassani D Strain M J Sorel M Helt L G Sipe J E Liscidini M Galli M Bajoni D 2012 Opt. Express 20 23100 DOI: 10.1364/OE.20.023100
|
[31] |
|
[32] |
Lu L L Xia L J Chen Z Y Chen L Z Yu T H Tao T Ma W C Pan Y Cai X L Lu Y Q Zhu S N Ma X S 2020 npj Quantum Inf. 6 30 DOI: 10.1038/s41534-020-0260-x
|
[33] |
Zhu P Y Zheng Q L Xue S C Wu C Yu X Y Wang Y Liu Y W Qiang X G Wu J J Xu P 2021 Front. Phys. 15 61501 DOI: 10.1007/s11467-020-1010-4
|
[34] |
Zhu P Y Xue S C Zheng Q L Wu C Yu X Y Wang Y Liu Y W Qiang X G Deng M T Wu J J Xu P 2020 Opt. Express 28 26792 DOI: 10.1364/OE.402383
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|