|
|
Phase precision of Mach-Zehnder interferometer in PM2.5 air pollution |
Duan Xie(谢端), Haifeng Chen(陈海峰) |
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract This paper theoretically explores the effect of PM2.5 air pollution on the phase precision of a Mach-Zehnder interferometer. With the increasing of PM2.5 concentration, phase precision for inputs of coherent state & vacuum state and inputs of coherent state & squeezed vacuum state will gradually decrease and be lower than the standard quantum limit. When the value of relative humidity is increasing, the precision of two input cases is decreasing much faster. We also find that the precision for inputs of coherent state & squeezed state is better than that of coherent state & vacuum state when PM2.5 concentration is lower. As PM2.5 concentration increases, the precision for inputs of coherent state & squeezed state decreases faster, and then the two precisions tend to be the same while the concentration is higher.
|
Received: 06 December 2017
Revised: 10 April 2018
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61306131) and the Science Foundation of Shaanxi Provincial Department of Education, China (Grant No. 14JK1682). |
Cite this article:
Duan Xie(谢端), Haifeng Chen(陈海峰) Phase precision of Mach-Zehnder interferometer in PM2.5 air pollution 2018 Chin. Phys. B 27 070304
|
[1] |
Lang M D and Caves C M 2014 Phys. Rev. A 90 025802
|
[2] |
Haine S A 2013 Phys. Rev. Lett. 110 053002
|
[3] |
Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
|
[4] |
Caves C M 1981 Phys. Rev. D 23 1693
|
[5] |
Paris M G A 1995 Phys. Lett. A 201 132
|
[6] |
Aasi J, Abadie J, Abbott B P, et al. 2013 Nat. Photon. 7 613
|
[7] |
Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J and Vahlbruch H 2013 Phys. Rev. Lett. 110 181101
|
[8] |
The L I G O Scientific Collaboration, Abadie J, Abbott B P, et al. 2011 Nat. Phys. 7 962
|
[9] |
Ono T, Chesterking J S, Cable H, Brien J L O and Matthews J C F 2017 New J. Phys. 19 053005
|
[10] |
Brask J B, Chaves R and Kołodyński J 2015 Phys. Rev. X 5 031010
|
[11] |
Israel Y, Rosen S and Silberberg Y 2014 Phys. Rev. Lett. 112 103604
|
[12] |
Zhou Z Y, Liu S L, Liu S K, Li Y H, Ding D S, Guo G C and Shi B S 2017 Phys. Rev. Appl. 7 064025
|
[13] |
Joo J, Park K, Jeong H, Munro W J, Nemoto K and Spiller T P 2012 Phys. Rev. A 86 043828
|
[14] |
Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601
|
[15] |
Hu D and Jiang J Y 2013 J. Environ. Prot. 4 746
|
[16] |
Deng X J, Tie X X, Wu D, Zhou X J, Bi X Y, Tan H B, Li F and Jiang C L 2008 Atmos. Environ. 42 1424
|
[17] |
Watson J G, Chow J C, Green H M, Frank N and Pitchford M 1998 Guidance for Using Continuous Monitors in PM2.5 Monitoring Networks (U.S. Environmental Protection Agency) pp. 3-18
|
[18] |
Matsuoka F, Tomita A and Okamoto A 2016 Phys. Rev. A 93 032308
|
[19] |
Dinani H T and Berry D W 2014 Phys. Rev. A 90 023856
|
[20] |
Zhang Y M, Li X W, Yang W and Jin G R 2013 Phys. Rev. A 88 043832
|
[21] |
Israel Y, Afek I, Rosen S, Ambar O and Silberberg Y 2012 Phys. Rev. A 85 022115
|
[22] |
Xiang G Y, Hofmann H F and Pryde G J 2013 Sci. Rep. 3 2684
|
[23] |
Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
|
[24] |
Nielsen M A and Chuang I L 2011 Quantum Compution Quantum Information:10th Anniversary Edition (Cambridge:Cambridge University Press) p. 360
|
[25] |
Shankar R 1994 Principles Quantim Mechanics (New York:Plenum Press) p. 272
|
[26] |
Stockton J K, Geremia J M, Doherty A C and Mabuchi H 2003 Phys. Rev. A 67 022112
|
[27] |
Sisler J F and Malm W C 2000 J. Air Waste Manage. 50 775
|
[28] |
Wang Q, Bi X H, Zhang Y F, Yang C J, Hong S M, Li J and Feng Y C 2012 Chin. Environ. Sci. 32 10 (in Chinese)
|
[29] |
Cheung H C, Wang T, Baumann K and Guo H 2005 Atmos. Environ. 39 6568
|
[30] |
Zhang Q, Zheng X Y, Feng Y C, Zhang Y F, Hong S M, Shen J D, Wang J, Ding J, Ren H and Jiao L 2016 Environ. Pollut. Control. 38 71 (in Chinese)
|
[31] |
Malm W C and Derek E D 2001 Atmos. Environ. 5 2845
|
[32] |
Hughes S W and Cowley M 2016 Eur. J. Phys. 37 015601
|
[33] |
Shang Q, Li Z H, Yang J and Pu M J 2011 Environ. Sci. 32 2750 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|