Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 075201    DOI: 10.1088/1674-1056/21/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical simulation and experimental validation of direct current air corona discharge under atmospheric pressure

Liu Xing-Hua(刘兴华)a), He Wei(何为)a), Yang Fan(杨帆)a), Wang Hong-Yu(王虹宇)b), Liao Rui-Jin(廖瑞金)a), and Xiao Han-Guang(肖汉光) a)
a State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China;
b Department of Physics, Anshan Normal University, Anshan 114005, China
Abstract  Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air. The model is based on plasma hydrodynamic and chemical models, and includes 12 species and 26 reactions. In addition, the photoionization effect is introduced into the model. The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out. The discharge voltage– current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements. In addition, the dynamics of volume charged species generation, discharge current waveform, current density distribution at an electrode, charge density, electron temperature, and electric field variations are investigated in detail based on the model. The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge.
Keywords:  corona discharge      hybrid model      discharge voltage--current characteristics      current density distribution  
Received:  06 October 2011      Revised:  24 February 2012      Accepted manuscript online: 
PACS:  52.25.Dg (Plasma kinetic equations)  
  52.65.-y (Plasma simulation)  
  52.80.Hc (Glow; corona)  
  52.40.Kh (Plasma sheaths)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB209401), the National Natural Science Foundation of China (Grant No. 51007096), and the Scientific Research Foundation of State Key Lab of Power Transmission Equipment and System Security, China (Grant No. 2007DA10512709102).
Corresponding Authors:  Liu Xing-Hua     E-mail:  hua101334@gmail.com

Cite this article: 

Liu Xing-Hua(刘兴华), He Wei(何为), Yang Fan(杨帆), Wang Hong-Yu(王虹宇), Liao Rui-Jin(廖瑞金), and Xiao Han-Guang(肖汉光) Numerical simulation and experimental validation of direct current air corona discharge under atmospheric pressure 2012 Chin. Phys. B 21 075201

[1] Pokryvailo A, Yankelevich Y, Nissim N, Baksht R and Ashkenazy J 2006 IEEE Trans. Plasma Sci. 34 104
[2] Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M and Vialle M 1995 J. Phys. D: Appl. Phys. 28 738
[3] Macheret S O, Shneider M N and Miles R B 2002 IEEE Trans. Plasma Sci. 30 1301
[4] Salasoo L, Nelson J K, Schwabe R J and Snaddon R W L 1985 J. Appl. Phys. 58 2949
[5] Pancheshnyi S V and Starikovskii A Y 2003 J. Phys. D: Appl. Phys. 36 2683
[6] Morrow R 1997 J. Phys. D: Appl. Phys. 30 3099
[7] Kumara S, Serdyuk Y V and Gubanski S M 2009 IEEE Trans. Dielect. El. In. 16 726
[8] Gordiets B F, Ferreira C M, Guerra V L, Loureiro J M A H, Nahomy J, Pagnon D, Touzeau M and Vialle M 1995 IEEE Trans. Plasma Sci. 23 750
[9] Du H L, He L M, Lan Y D and Wang F 2011 Acta Phys. Sin. 11 115201 (in Chinese)
[10] Jiang N and Cao Z X 2010 Acta Phys. Sin. 59 3324 (in Chinese)
[11] Cai L B and Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese)
[12] Yin Z Q, Zhao P P, Dong L F and Fang T Z 2011 Acta Phys. Sin. 60 025206 (in Chinese)
[13] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[14] Bazelyan E M and Razhanski I M 1988 Spark Discharge in Air (Novosibirsk: Nauka) p. 165
[15] Yuan X H and Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
[16] Neufeld P D, Janzen A R and Aziz R A 1972 J. Chem. Phys. 57 1100
[17] Bird R B, Stewart W E and Lightfoot E N 1960 Transport Phenomena (New York: Wiley) p. 46
[18] Farouk T, Farouk B, Gutsol A and Fridman A 2008 Plasma Sources Sci. Technol. 17 035015
[19] Antao D S, Staack D A, Fridman A and Farouk B 2009 Plasma Sources Sci. Technol 18 035016
[20] Staack D, Farouk B, Gutsol A and Fridman A 2005 Plasma Sources Sci. Technol. 14 700
[21] Marode E, Bastien F and Bakker MA 1979 J. Appl. Phys. 50 140
[22] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[23] Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press) p. 146
[24] Sigmond R S 1984 J. Appl. Phys. 56 1355
[25] Wang Q, Economou D J and Donnelly V M 2006 J. Appl. Phys. 100 023
[26] Choi J, Iza F, Lee J K and Ryu C M 2007 IEEE Trans. Plasma Sci. 35 1274
[27] Arkhipenko V I, Zgirovskii S M, Kirillov A A and Simonchick L V 2002 Plasma Phys. Rep. 28 858
[28] Chapman B 1981 Glow Discharge Processes: Sputtering and Plasma Etching (New York: Wiley) p. 146
[1] Review on ionization and quenching mechanisms of Trichel pulse
Anbang Sun(孙安邦), Xing Zhang(张幸), Yulin Guo(郭雨林), Yanliang He(何彦良), and Guanjun Zhang(张冠军). Chin. Phys. B, 2021, 30(5): 055207.
[2] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[3] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[4] Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities
Tongkai Zhang(张桐恺), Yu Zhang(张宇), Qizheng Ji(季启政), Ben Li(李犇), Jiting Ouyang(欧阳吉庭). Chin. Phys. B, 2019, 28(7): 075202.
[5] Equivalent magnetic dipole method used to design gradient coil for unilateral magnetic resonance imaging
Zheng Xu(徐征), Xiang Li(李想), Pan Guo(郭盼), Jia-Min Wu(吴嘉敏). Chin. Phys. B, 2018, 27(5): 058702.
[6] One-dimensional hybrid simulation of the electrical asymmetry effectcaused by the fourth-order harmonic in dual-frequencycapacitively coupled plasma
Shuai Wang(王帅), Hai-Feng Long(龙海凤), Zhen-Hua Bi(毕振华), Wei Jiang(姜巍), Xiang Xu(徐翔), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(11): 115202.
[7] Using a Mach–Zehnder interferometer to deduce nitrogen density mapping
F. Boudaoud, M. Lemerini. Chin. Phys. B, 2015, 24(7): 075205.
No Suggested Reading articles found!