Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 030303    DOI: 10.1088/1674-1056/28/3/030303
GENERAL Prev   Next  

Fringe visibility and distinguishability in two-path interferometer with an asymmetric beam splitter

Yanjun Liu(刘彦军)1,2, Jing Lu(卢竞)1, Zhihui Peng(彭智慧)1, Lan Zhou(周兰)1, Dongning Zheng(郑东宁)2,3,4
1 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center of Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China;
2 Beijing National Laboratory for Condnesed Matter Physics and Institute of Physics, Beijing 100190, China;
3 CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
Abstract  We study the fringe visibility and the distinguishability of a general Mach-Zehnder interferometer with an asymmetric beam splitter. Both the fringe visibility V and the distinguishability D are affected by the input state of the particle characterized by the Bloch vector S=(Sx,Sy,Sz) and the second asymmetric beam splitter characterized by the paramter β. For the total system is initially in a pure state, it is found that the fringe visibility reaches the upper bound and the distinguishability reaches the lower bound when cosβ=-Sx. The fringe visibility obtain the maximum only if Sx=0 and β=π/2 when the input particle is initially in a mixed state. The complementary relationship V2+D2 ≤ 1 is proved in a general Mach-Zehnder interferometer with an asymmetric beam splitter, and the conditions for the equality are also presented.
Keywords:  complementarity      fringe visibility      distinguishability      general Mach-Zehnder interferometer  
Received:  24 October 2018      Revised:  20 December 2018      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  07.60.Ly (Interferometers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434011, 11575058, and 61833010), the “Science and Technology Innovation Platform and Talent Plan” Excellent Talent Award of Hunan Province, China (Grant No. 2017XK2021), the Science Funds from the Ministry of Science and Technology of China (Grant Nos. 2017YFA0304300 and 2016YFA0300601), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000).
Corresponding Authors:  Jing Lu     E-mail:  lujing@hunnu.edu.cn

Cite this article: 

Yanjun Liu(刘彦军), Jing Lu(卢竞), Zhihui Peng(彭智慧), Lan Zhou(周兰), Dongning Zheng(郑东宁) Fringe visibility and distinguishability in two-path interferometer with an asymmetric beam splitter 2019 Chin. Phys. B 28 030303

[1] Bohr N 1928 Naturwissenschaften 16 245
[2] Bohr N 1928 Nature 121 580
[3] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[4] Greenberger D M and Yasin A 1988 Phys. Lett. A 128 391
[5] Jaeger G, Shimony A and Vaidman L 1995 Phys. Rev. A 51 54
[6] Englert B G 1996 Phys. Rev. Lett. 77 2154
[7] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402
[8] Mandel L 1991 Opt. Lett. 16 1882
[9] Jaeger G, Horne M A and Shimony A 1993 Phys. Rev. A 48 1023
[10] Dürr S, Nonn T and Rempe G 1998 Phys. Rev. Lett. 81 5705
[11] Dörr S 2001 Phys. Rev. A 64 042113
[12] Zawisky M, Baron M and Loidl R 2002 Phys. Rev. A 66 063608
[13] Kaszlikowski D, Kwek L C, Zukowski M and Englert B 2003 Phys. Rev. Lett. 91 037901
[14] Bimonte G and Musto R 2003 Phys. Rev. A 67 066101
[15] Bramon A, Garbarino G and Hiesmayr B C 2004 Phys. Rev. A 69 022112
[16] Peng X H, Zhu X W, Dieter S, Du J F, Liu M L and Gao K L 2005 Phys. Rev. A 72 052109
[17] Jakob M and Bergou J 2007 Phys. Rev. A 76 052107
[18] Ban M J 2008 Mod. Opt. 55 3625
[19] Liu N L, Li L, Yu S X and Chen Z B 2009 Phys. Rev. A 79 052108
[20] Bana M, Shibataa F and Kitajimaa S 2009 J. Mod. Opt. 56 89
[21] Han Y, Wu C W, Wu W, Chen P X and Li C Z 2009 Chin. Phys. Lett. 26 040303
[22] Fonseca-Romero K M, de Oliveira J G G, Peixoto de Faria J G and Nemes M C 2014 Phys. Rev. A 90 062102
[23] Siddiqui M A and Qureshi T 2015 Prog. Theor. Exp. Phys. 2015 083A02
[24] Angelo R M and Ribeiro A D 2015 Found. Phys. 45 1407
[25] Siddiqui M A and Qureshi T 2016 Quantum Stud.: Math. Found 3 115
[26] Li L, Liu N L and Yu S X 2012 Phys. Rev. A 85 054101
[27] Jia A A, Huang J H, Feng W, Zhang T C and Zhu S Y 2014 Chin. Phys. B 23 030307
[28] Jia A A, Yang J, Yan S H, Hu Q Q, Luo Y K and Zhu S Y 2015 Chin. Phys. B 24 080302
[29] Liu Y J, Lu J and Zhou L 2017 Laser Phys. Lett. 14 055204
[1] Analysis of period and visibility of dual phase grating interferometer
Jun Yang(杨君), Jian-Heng Huang(黄建衡), Yao-Hu Lei(雷耀虎), Jing-Biao Zheng(郑景标), Yu-Zheng Shan(单雨征), Da-Yu Guo(郭大育), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2022, 31(5): 058701.
[2] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[3] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
[4] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
[5] Experimental demonstration of tight duality relation inthree-path interferometer
Zhi-Jin Ke(柯芝锦), Yu Meng(孟雨), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(5): 050307.
[6] Wave–particle duality in a Raman atom interferometer
Jia Ai-Ai (贾爱爱), Yang Jun (杨俊), Yan Shu-Hua (颜树华), Hu Qing-Qing (胡青青), Luo Yu-Kun (罗玉昆), Zhu Shi-Yao (朱诗尧). Chin. Phys. B, 2015, 24(8): 080302.
[7] Elementary analysis of interferometers for wave–particle duality test and the prospect of going beyond the complementarity principle
Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(11): 110309.
[8] Deterministically distinguishing a remote Bell state
Zhao Zhi-Guo(赵志国), Peng Wei-Min(彭卫民), and Tan Yong-Gang(谭勇刚). Chin. Phys. B, 2011, 20(1): 010307.
[9] Local distinguishability by projective measurement
Jiang Wei(姜伟), Ren Xi-Jun(任喜军), Zhou Xing-Xiang(周幸祥), Zhou Zheng-Wei(周正威), and Guo Guang-Can(郭光灿). Chin. Phys. B, 2009, 18(8): 3243-3246.
[10] Indistinguishability of orthogonal time-separated bell states
Tan Yong-Gang(谭勇刚), Cai Qing-Yu(蔡庆宇), and Shi Ting-Yun(史庭云). Chin. Phys. B, 2008, 17(9): 3194-3197.
[11] Entanglement and photon statistics of output fields from beam splitter for binomial state inputs
Zhou Qing-Ping (周清平), Fang Mao-Fa (方卯发). Chin. Phys. B, 2004, 13(9): 1477-1486.
No Suggested Reading articles found!