Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060302    DOI: 10.1088/1674-1056/24/6/060302
GENERAL Prev   Next  

Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence

Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊)
School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
Abstract  

Quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence is investigated by making use of concurrence C and quantum discord (QD). Firstly, we show that both the concurrence and QD exhibit oscillation with time whereas a remarkable difference between them is presented: there is an “entanglement intermittently sudden death” phenomenon in the concurrence but not in the QD, which is valid for all the initial states of this system. Also, the interval time of entanglement sudden death is found to be strongly dependent on the initial states, the inhomogeneous magnetic field b and the anisotropic parameter . Then, it implies that the steady concurrence and QD can be obtained in the long-time limit, which means that the environmental decoherence cannot entirely destroy the quantum correlation, the variation of the uniform magnetic field B and the anisotropic parameter can change the magnitude of the steady concurrence and QD evidently whereas the parameter b cannot. In addition, based on the analysis of the steady concurrence and QD with t→∞, we give the reason why the magnitude of the steady concurrence and QD is so complicated with the change of the parameters B and D, whereas the parameter b is independent of the steady concurrence and QD.

Keywords:  Heisenberg model      entanglement      quantum discord      decoherence  
Received:  03 November 2014      Revised:  14 January 2015      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Pq (Spin chain models)  
Fund: 

Project supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2012021003-3) and the Special Funds of the National Natural Science Foundation of China (Grant No. 11247247).

Corresponding Authors:  Yang Guo-Hui     E-mail:  yangguohui_1981_1981@126.com
About author:  03.65.Ud; 75.10.Pq

Cite this article: 

Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊) Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence 2015 Chin. Phys. B 24 060302

[1] Nielsen M A and Chuang I L 1998 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Nielsen M N, Ph. D Thesis, University of Mexico equantph/0011036
[3] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Zheng Y Z, Wu G C, Gu Y J and Guo G C 2003 Chin. Phys. 12 1070
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[6] Ekert A K 1991 Phys. Rev.Lett. 67 661
[7] Fang M F and Wang C Z 2003 Chin. Phys. 12 287
[8] Liu X J and Fang M F 2003 Chin. Phys. 12 971
[9] Luo S L 2008 Phys. Rev. A 77 022301
[10] Li L and Yang G H 2014 Chin. Phys. B 23 070306
[11] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[12] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[13] Luo S L 2008 Phys. Rev. A 77 042303
[14] Luo S L and Lina C 2013 Phys. Rev. A 87 062303
[15] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[16] Luo S L and Fu S 2010 Phys. Rev. A 82 034302
[17] Zhu H J and Zhang G F 2014 Chin. Phys. B 23 120306
[18] Luo S L and Fu S 2011 Phys. Rev. Lett. 106 120401
[19] Chen L, Chitambar E, Modi K and Vacanti G 2011 Phys. Rev. A 83 020101
[20] Wang X 2001 Phys. Rev. A 64 012313
[21] Hu X D, de Sousa Rogerio and Das Sarma S 2001 Phys. Rev. Lett. 86 918
[22] Hao X 2009 Phys. Rev. A 80 024303
[23] Kane B E 1998 Nature 133 393
[24] Sorensen A, Duan L M, Cirac J I and Zoller P 2001 Nature 63 409
[25] Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408
[26] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[27] Zhang G F, Jiang Z T and Abliz A 2011 Ann. Phys. 326 867
[28] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[29] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[30] Zhang G F 2007 Phys. Rev. A 75 034304
[31] Bose S 2003 Phys. Rev. Lett. 91 207901
[32] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[33] Abliz A, Gao H J, Xie X C, Wu Y S and Liu W M 2006 Phys. Rev. A 74 052105
[34] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[35] Burkard G, Loss D and Divincenzo D P 1999 Phys. Rev. B 59 2070
[36] Burkard G, Loss D and Divincenzo D P 1999 Phys. Rev. B 59 3002
[37] Lidar D A, Bacon D and Whaley K B 1999 Phys. Rev. Lett. 82 4556
[38] DiVincenzo D P, Bacon D, Kempe J, Burkard G and Whaley K B 2000 Nature 408 339
[39] Santos L F 2003 Phys. Rev. A 67 062306
[40] Carmichael H J 1999 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Plank Equations (Berlin: Springer-Verlag)
[41] Lindblad G 1976 Commun. Math. Phys. 48 199
[42] Anteneodo C and Souza M C 2003 J. Opt. B: Quantum Semiclassical Opt. 5 73
[43] Bennett C H, Divincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[44] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[45] Susa C E and Reina J H 2010 Phys. Rev. A 82 042102
[46] Yu T and Eberly J H 2009 Science 323 598
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[9] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!