Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060301    DOI: 10.1088/1674-1056/24/6/060301
GENERAL Prev   Next  

Solutions of the D-dimensional Schrödinger equation with Killingbeck potential: Lie algebraic approach

H. Panahia, S. Zarrinkamarb, M. Baradarana
a Department of Physics, University of Guilan, Rasht 41635-1914, Iran;
b Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran
Abstract  Algebraic solutions of the D-dimensional Schrödinger equation with Killingbeck potential are investigated using the Lie algebraic approach within the framework of quasi-exact solvability. The spectrum and wavefunctions of the system are reported and the allowed values of the potential parameters are obtained through the sl(2) algebraization.
Keywords:  quasi-exactly solvable      Schrödinger equation      Killingbeck potential      sl(2) Lie algebra      representation theory  
Received:  21 September 2014      Revised:  22 January 2015      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
Corresponding Authors:  H. Panahi, S. Zarrinkamar, M. Baradaran     E-mail:  t-panahi@guilan.ac.ir;zarrinkamar.s@gmail.com;marzie.baradaran@yahoo.com
About author:  03.65.-w; 03.65.Fd; 03.65.Ge

Cite this article: 

H. Panahi, S. Zarrinkamar, M. Baradaran Solutions of the D-dimensional Schrödinger equation with Killingbeck potential: Lie algebraic approach 2015 Chin. Phys. B 24 060301

[1] Turbiner A V 1988 Commun. Math. Phys. 118 467
[2] Turbiner A V 1994 Contemp. Math. 160 263
[3] Gomez-Ullate D, Kamran N and Milson R 2007 Phys. Atom. Nucl. 70 520
[4] Gómez-Ullate D, Kamran N and Milson R 2005 J. Phys. A: Math. Gen. 38 2005
[5] Ushveridze A G 1990 Mod. Phys. Lett. A 5 1891
[6] Ushveridze A G 1994 Quasi-exactly Solvable Models in Quantum Mechanics (Bristol: IOP)
[7] Zhang Y Z 2013 J. Math. Phys. 54 102104
[8] Lee Y H, Links J and Zhang Y Z 2011 J. Phys. A: Math. Theor. 44 482001
[9] Sasaki R 2007 J. Math. Phys. 48 122104
[10] Sasaki R, Yang W L and Zhang Y Z 2009 SIGMA 5 104
[11] Ho C L 2006 Ann. Phys. 321 2170
[12] Panahi H and Baradaran M 2012 Mod. Phys. Lett. A 27 1250176
[13] Panahi H and Baradaran M 2013 Eur. Phys. J. Plus 128 39
[14] Fernández F M 1992 Phys. Lett. A 166 173
[15] Roychoudhury R K, Varshni Y P and Sengupta M 1990 Phys. Rev. A 42 184
[16] Roychoudhury R K and Varshni Y P 1988 J. Phys. A: Math. Gen. 21 3025
[17] Chaudhuri R N 1988 J. Phys. A: Math. Gen. 21 567
[18] Chaudhuri R N and Mondal M 1995 Phys. Rev. A 52 1850
[19] Killingbeck J 1978 Phys. Lett. A 67 13
[20] Plante G and Antippa A F 2005 J. Math. Phys. 46 062108
[21] Saxena R P and Varma V S 1982 J. Phys. A: Math. Gen. 15 L221
[22] Bessis D E, Vrscay R and Handy C R 1987 J. Phys. A: Math. Gen. 20 149
[23] Saxena R P and Varma V S 1982 J. Phys. A: Math. Gen. 15 L149
[24] Dong S H 2000 Int. J. Theor. Phys. 39 1119
[25] Özer O and Gönül B 2003 Mod. Phys. Lett. A 18 2581
[26] Rahmani S, Hassanabadi H and Zarrinkamar S 2014 Phys. Scr. 89 065301
[27] Hassanabadi S, Ghominejad M, Zarrinkamar S and Hassanabadi H 2013 Chin. Phys. B 22 060303
[28] Castro L B and de Castro A S 2014 Chin. Phys. B 23 090301
[29] Eichten E, Gottfried E, Kinoshita T, Lane K D and Yan T M 1978 Phys. Rev. D 17 3090
[30] Vrscay E R 1985 Phys. Rev. A 31 2054
[31] Bender C M and Wu T T 1969 Phys. Rev. 184 1231
[32] Reid C 1970 J. Mol. Spectrosc. 36 183
[33] Austin E J 1980 Mol. Phys. 40 893
[34] Killingbeck J 1978 Phys. Lett. A 65 87
[35] Skupsky S 1980 Phys. Rev. A 21 1316
[36] Cauble R, Blaha M and Davis J 1984 Phys. Rev. A 29 3280
[37] Adhikari R, Dutt R and Varshni Y P 1989 Phys. Lett. A 141 1
[38] Boumedjane Y, Saidi H, Hassouni S and Zerarka A 2007 Appl. Math. Comput. 194 243
[39] Barakat T 2006 J. Phys. A: Math. Gen. 39 823
[40] Dong S H 2011 Wave Equations in Higher Dimensions (New York: Springer)
[41] Hassanabadi H, Rahimov H and Zarrinkamar S 2011 Ann. Phys. 523 566
[42] Ikot A N, Hassanabadi H, Obong H P, Chad Umoren Y E, Isonguyo C N and Yazarloo B H 2014 Chin. Phys. B 23 120303
[43] Weyl H 1931 The Theory of Groups and Quantum Mechanics (New York: Dover)
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[6] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[7] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[8] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[9] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
No Suggested Reading articles found!