|
|
Solutions of the D-dimensional Schrödinger equation with Killingbeck potential: Lie algebraic approach |
H. Panahia, S. Zarrinkamarb, M. Baradarana |
a Department of Physics, University of Guilan, Rasht 41635-1914, Iran; b Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran |
|
|
Abstract Algebraic solutions of the D-dimensional Schrödinger equation with Killingbeck potential are investigated using the Lie algebraic approach within the framework of quasi-exact solvability. The spectrum and wavefunctions of the system are reported and the allowed values of the potential parameters are obtained through the sl(2) algebraization.
|
Received: 21 September 2014
Revised: 22 January 2015
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Fd
|
(Algebraic methods)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
Corresponding Authors:
H. Panahi, S. Zarrinkamar, M. Baradaran
E-mail: t-panahi@guilan.ac.ir;zarrinkamar.s@gmail.com;marzie.baradaran@yahoo.com
|
About author: 03.65.-w; 03.65.Fd; 03.65.Ge |
Cite this article:
H. Panahi, S. Zarrinkamar, M. Baradaran Solutions of the D-dimensional Schrödinger equation with Killingbeck potential: Lie algebraic approach 2015 Chin. Phys. B 24 060301
|
[1] |
Turbiner A V 1988 Commun. Math. Phys. 118 467
|
[2] |
Turbiner A V 1994 Contemp. Math. 160 263
|
[3] |
Gomez-Ullate D, Kamran N and Milson R 2007 Phys. Atom. Nucl. 70 520
|
[4] |
Gómez-Ullate D, Kamran N and Milson R 2005 J. Phys. A: Math. Gen. 38 2005
|
[5] |
Ushveridze A G 1990 Mod. Phys. Lett. A 5 1891
|
[6] |
Ushveridze A G 1994 Quasi-exactly Solvable Models in Quantum Mechanics (Bristol: IOP)
|
[7] |
Zhang Y Z 2013 J. Math. Phys. 54 102104
|
[8] |
Lee Y H, Links J and Zhang Y Z 2011 J. Phys. A: Math. Theor. 44 482001
|
[9] |
Sasaki R 2007 J. Math. Phys. 48 122104
|
[10] |
Sasaki R, Yang W L and Zhang Y Z 2009 SIGMA 5 104
|
[11] |
Ho C L 2006 Ann. Phys. 321 2170
|
[12] |
Panahi H and Baradaran M 2012 Mod. Phys. Lett. A 27 1250176
|
[13] |
Panahi H and Baradaran M 2013 Eur. Phys. J. Plus 128 39
|
[14] |
Fernández F M 1992 Phys. Lett. A 166 173
|
[15] |
Roychoudhury R K, Varshni Y P and Sengupta M 1990 Phys. Rev. A 42 184
|
[16] |
Roychoudhury R K and Varshni Y P 1988 J. Phys. A: Math. Gen. 21 3025
|
[17] |
Chaudhuri R N 1988 J. Phys. A: Math. Gen. 21 567
|
[18] |
Chaudhuri R N and Mondal M 1995 Phys. Rev. A 52 1850
|
[19] |
Killingbeck J 1978 Phys. Lett. A 67 13
|
[20] |
Plante G and Antippa A F 2005 J. Math. Phys. 46 062108
|
[21] |
Saxena R P and Varma V S 1982 J. Phys. A: Math. Gen. 15 L221
|
[22] |
Bessis D E, Vrscay R and Handy C R 1987 J. Phys. A: Math. Gen. 20 149
|
[23] |
Saxena R P and Varma V S 1982 J. Phys. A: Math. Gen. 15 L149
|
[24] |
Dong S H 2000 Int. J. Theor. Phys. 39 1119
|
[25] |
Özer O and Gönül B 2003 Mod. Phys. Lett. A 18 2581
|
[26] |
Rahmani S, Hassanabadi H and Zarrinkamar S 2014 Phys. Scr. 89 065301
|
[27] |
Hassanabadi S, Ghominejad M, Zarrinkamar S and Hassanabadi H 2013 Chin. Phys. B 22 060303
|
[28] |
Castro L B and de Castro A S 2014 Chin. Phys. B 23 090301
|
[29] |
Eichten E, Gottfried E, Kinoshita T, Lane K D and Yan T M 1978 Phys. Rev. D 17 3090
|
[30] |
Vrscay E R 1985 Phys. Rev. A 31 2054
|
[31] |
Bender C M and Wu T T 1969 Phys. Rev. 184 1231
|
[32] |
Reid C 1970 J. Mol. Spectrosc. 36 183
|
[33] |
Austin E J 1980 Mol. Phys. 40 893
|
[34] |
Killingbeck J 1978 Phys. Lett. A 65 87
|
[35] |
Skupsky S 1980 Phys. Rev. A 21 1316
|
[36] |
Cauble R, Blaha M and Davis J 1984 Phys. Rev. A 29 3280
|
[37] |
Adhikari R, Dutt R and Varshni Y P 1989 Phys. Lett. A 141 1
|
[38] |
Boumedjane Y, Saidi H, Hassouni S and Zerarka A 2007 Appl. Math. Comput. 194 243
|
[39] |
Barakat T 2006 J. Phys. A: Math. Gen. 39 823
|
[40] |
Dong S H 2011 Wave Equations in Higher Dimensions (New York: Springer)
|
[41] |
Hassanabadi H, Rahimov H and Zarrinkamar S 2011 Ann. Phys. 523 566
|
[42] |
Ikot A N, Hassanabadi H, Obong H P, Chad Umoren Y E, Isonguyo C N and Yazarloo B H 2014 Chin. Phys. B 23 120303
|
[43] |
Weyl H 1931 The Theory of Groups and Quantum Mechanics (New York: Dover)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|