Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050301    DOI: 10.1088/1674-1056/24/5/050301
GENERAL Prev   Next  

Ponderomotive squeezing and entanglement ina ring cavity with two vibrational mirrors

Feng Xiao-Min (冯晓敏), Xiao Yin (肖银), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明)
Laboratory of Nanophotonic Functional Materials and Devices (SIPSE), Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
Abstract  

We investigate the properties of the ponderomotive squeezing and the entanglements in a ring cavity with two vibrational mirrors. In the part about squeezing, we find that the squeezing spectrum of the transmitted field shows a distinct feature when the two vibrational mirrors have different frequencies. We also study the effects of some external parameters such as the temperature and the laser power on the degree of squeezing. In the part concerning entanglement, we study the entanglements between the cavity field and one of the vibrational mirrors, and that between the two vibrational mirrors, with emphasis focusing on the robustness of entanglements with respect to the environment temperature.

Keywords:  optomechanical cavity      squeezing      entanglement  
Received:  30 October 2014      Revised:  27 November 2014      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: 

Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012 and 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1243).

Corresponding Authors:  Zhang Zhi-Ming     E-mail:  zmzhang@scnu.edu.cn
About author:  03.65.Ta; 03.65.Ud; 42.50.Lc

Cite this article: 

Feng Xiao-Min (冯晓敏), Xiao Yin (肖银), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明) Ponderomotive squeezing and entanglement ina ring cavity with two vibrational mirrors 2015 Chin. Phys. B 24 050301

[1] Braginsky V B and Khalili F Y 1992 Quantum Measurement (Cambridge: Cambridge University Press)
[2] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Kippenberg T J and Vahala K J 2008 Science 321 1172
[4] Marquardt F and Girvin S M 2009 Physics 2 40
[5] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[6] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[7] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[8] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[9] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[10] Hartmann M J and Plenio M B 2008 Phys. Rev. Lett. 101 200503
[11] Clerk A A, Marquardt F and Jacobs K 2008 New J. Phys. 10 095010
[12] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337
[13] Huang S M and Agarwal G S 2009 New J. Phys. 11 103044
[14] Braginsky V B and Manukin A B 1967 Sov. Phys. JETP 25 653
[15] Brooks D W C, Thierry B, Sydney S, Purdy T P, Nathan B and Stamper-Kurn D M 2012 Nature 488 476
[16] Safavi-Naeini A H, Simon G, Hill J T, Jasper C, Markus A and Oskar P 2013 Nature 500 185
[17] Purdy T P, Yu P L, Peterson R W, Kampel N S and Regal C A 2013 Phys. Rev. X 3 031012
[18] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
[19] Teufel J D, Castellanos-Beltran M A, Harlow J W and Lehnert K W 2009 Nat. Nano. 4 820
[20] Ma P C, Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 3621
[21] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
[22] Sun Q, Hu X, Ji A C and Liu W M 2011 Phys. Rev. A 83 043606
[23] Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 17979
[24] Huang S M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055504
[25] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[26] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag)
[27] Mancini S and Tombesi P 1994 Phys. Rev. A 49 4055
[28] Gardiner C W and Zoller P 2004 Quantum Noise (Berlin: Springer-Verlag)
[29] Kleckner D, Marshall W, de Dood Michiel J A, Dinyari K N, Pors B J, Irvine W T M and Bouwmeester D 2006 Phys. Rev. Lett. 96 173901
[30] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds K R W 2011 Nature 471 204
[31] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[32] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[33] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[12] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!