Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 034402    DOI: 10.1088/1674-1056/24/3/034402
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhanced thermoelectric performance of TiO2-based hybrid materials by incorporating conducting polymer

Wu Zi-Hua (吴子华)a, Xie Hua-Qing (谢华清)a, Zhai Yong-Biao (翟永彪)b, Gan Liang-Hua (甘良华)a, Liu Jun (刘俊)a
a School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China;
b Shanghai Yueda New Materials Science and Technology Ltd., Shanghai 201209, China
Abstract  In order to study the thermoelectric properties of TiO2-based hybrid materials, TiO2/polyparaphenylene (PPP) nanocomposites are fabricated by spark plasma sintering (SPS). The results show that the electrical conductivity follow percolation theory is enhanced due to the electron transfer highway provided by the conducting PPP phase. Furthermore, the thermal conductivity is reduced due to the drastic difference of vibrational spectra between organic and inorganic components. As a result, the greatest ZT=0.24 is obtained for TiO2/0.75 wt% PPP sample, which is 15-fold higher than pure TiO2 (ZT=0.016).
Keywords:  thermoelectric      TiO2      polyparaphenylene (PPP)  
Received:  02 July 2014      Revised:  15 October 2014      Accepted manuscript online: 
PACS:  74.25.fg (Thermoelectric effects)  
  74.25.fc (Electric and thermal conductivity)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51206103), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 13YZ128), the Opening Project of CAS Key Laboratory of Materials for Energy Conversion, China, and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher learning, China.
Corresponding Authors:  Xie Hua-Qing     E-mail:  hqxie@eed.sspu.cn

Cite this article: 

Wu Zi-Hua (吴子华), Xie Hua-Qing (谢华清), Zhai Yong-Biao (翟永彪), Gan Liang-Hua (甘良华), Liu Jun (刘俊) Enhanced thermoelectric performance of TiO2-based hybrid materials by incorporating conducting polymer 2015 Chin. Phys. B 24 034402

[1] Jood P, Mehta R J, Zhang Y, Peleckis G, Wang X, Siegel R W, Borca T, Dou S X and Ramanath G 2011 Nano Lett. 11 4337
[2] Terasaki Y, Sasago K and Uchinokura K 1997 Phys. Rev. B 56 12685
[3] Shin W and Murayama N 2000 Mater. Lett. 45 302
[4] He Q, Hao Q, Chen G, Poudel B, Wang X, Wang D and Ren Z 2007 Appl. Phys. Lett. 91 052505
[5] Thurber W R and Mante A 1965 Phys. Rev. 139 1655
[6] Xu L, Garrett M P and Hu B 2012 J. Phys. Chem. C 116 13020
[7] Liu C, Miao L, Zhou J, Huang R and Tanemura S 2012 J. Mater. Chem. 22 14180
[8] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 63
[9] Tang X, Xie W, Li H, Zhao W and Zhang Q 2007 Appl. Phys. Lett. 90 012102
[10] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[11] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[12] Hu M and Poulikakos D 2012 Nano Lett. 12 5487
[13] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[14] See K C, Feser J P, Chen C E, Majumdar A, Urban J J and Segalman R A 2010 Nano Lett. 10 4664
[15] He M, Ge J, Lin Z, Feng X, Wang X, Lu H, Yang Y and Qiu F 2012 Energy & Environ. Sci. 5 8351
[16] Wu Z H, Xie H Q and Zhai Y B 2013 Appl. Phys. Lett. 103 243901
[17] Lin D, Wu H, Qin X and Pan W 2009 Appl. Phys. Lett. 95 112104
[18] Lu B Y, Liu C C, Lu S, Xu J K, Jiang F X, Li Y Z and Zhang Z 2010 Chin. Phys. Lett. 27 057201
[19] Wang R Y, Segalman R A and Majumdar A 2006 Appl. Phys. Lett. 89 096601
[20] Lu P X and Qu L B 2013 Chin. Phys. Lett. 30 017101
[21] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605
[22] Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Li J B and Liu G Y 2012 Chin. Phys. B 21 106101
[23] Lu H L, Zhang C D, Cai J M, Gao M, Zou Q, Guo H M and Gao H J 2011 Chin. Phys. B 20 107301
[24] Rowe D M 2006 Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press) p. 42-2
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[8] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[9] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[10] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[11] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[12] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[13] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[14] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[15] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
No Suggested Reading articles found!