Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 034501    DOI: 10.1088/1674-1056/24/3/034501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High coercivity in large exchange-bias Co/CoO-MgO nano-granular films

Ge Chuan-Nan (葛传楠)a b, Wan Xian-Gang (万贤纲)a, Eric Pellegrinc, Hu Zhi-Wei (胡志伟)d, Wen-I Liange, Michael Brunsf, Zou Wen-Qin (邹文琴)a, Du You-Wei (都有为)a
a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
b Department of Physics, Jiangsu Second Normal University, Nanjing 210013, China;
c CELLS-ALBA Synchrotron Radiation Facility, Carretera BP 1413, km 3.3, Cerdanyola del Vallès (Barcelona) E-08290, Spain;
d Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, Dresden D-01187, Germany;
e Lawrence Berkeley National Lab Materials Science Division, Haimei Zheng laboratory, Berkeley CA 94720, USA;
f Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
Abstract  

We present a detailed study on the magnetic coercivity of Co/CoO-MgO core-shell systems, which exhibits a large exchange bias due to an increase of the uncompensated spin density at the interface between the CoO shell and the metallic Co core by replacing Co by Mg within the CoO shell. We find a large magnetic coercivity of 7120 Oe around the electrical percolation threshold of the Co/CoO core/shell particles, while samples with a smaller or larger Co metal volume fraction show a considerably smaller coercivity. Thus, this study may lead to a route to improving the magnetic properties of artificial magnetic material in view of potential applications.

Keywords:  granular films      exchange bias      coercivity  
Received:  25 September 2014      Revised:  27 October 2014      Accepted manuscript online: 
PACS:  45.70.Cc (Static sandpiles; granular compaction)  
  75.30.Et (Exchange and superexchange interactions)  
  75.50.Vv (High coercivity materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB932304), the National Natural Science Foundation of China (Grant Nos. U1232210, 91122035, 11174124, and 11374137), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 14KJB140003), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Wan Xian-Gang     E-mail:  xgwan@nju.edu.cn

Cite this article: 

Ge Chuan-Nan (葛传楠), Wan Xian-Gang (万贤纲), Eric Pellegrin, Hu Zhi-Wei (胡志伟), Wen-I Liang, Michael Bruns, Zou Wen-Qin (邹文琴), Du You-Wei (都有为) High coercivity in large exchange-bias Co/CoO-MgO nano-granular films 2015 Chin. Phys. B 24 034501

[1] Nogués J, Sort J, Langlais V, Skumryeva V, Suriñach S, Muñoz J S and Baró M D 2005 Phys. Rep. 422 65
[2] Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D and Nogués J 2003 Nature 423 850
[3] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
[4] Cheng Z H, Luo Y and Zhao G P 2013 Acta Phys. Sin. 62 176102 (in Chinese)
[5] Zhang H W, Zhou W P and Liu E K 2013 Acta Phys. Sin. 62 147501 (in Chinese)
[6] Shi Z, Du J and Zhou S M 2014 Chin. Phys. B 23 027503
[7] Hong J I, Leo T, Smith D J and Berkowitz A E 2006 Phys. Rev. Lett. 96 117204
[8] Nogués J, Leighton C and Schuller I K 2000 Phys. Rev. B 61 1315
[9] Sort J, Suriñach S, Muñoz J S, Baró M D, Nogués J, Chouteau G, Skumryev V and Hadjipanayis G C 2002 Phys. Rev. B 65 174420
[10] Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M and Stöhr J 2003 Phys. Rev. Lett. 91 017203
[11] Sort J, Nogués J, Amils X, Suriñach S, Muñoz J S and Baró M D 1999 Appl. Phys. Lett. 75 3177
[12] Sort J, Langlais V, Doppiu S, Dieny B, Suriñach S, Muñoz J S, Baró M D, Laurent Ch and Nogués J 2004 Nanotechnology 15 211
[13] Sort J, Nogués J, Suriñach S, Muñoz J S, Baró M D, Chappel E, Dupont F and Chouteau G 2001 Appl. Phys. Lett. 79 1142
[14] Hou Z P, Su F and Wang W Q 2014 Acta Phys. Sin. 63 087501 (in Chinese)
[15] Xiao G and Chien C L 1988 J. Appl. Phys. 63 4252
[16] Zheng N, Abdul Q and Ram C 2011 Chin. Phys. Lett. 28 098301
[17] Abeles B, Sheng P, Coutts M D and Arie Y 1975 Adv. Phys. 24 407
[18] Burnus T, Hu Z, Hsieh H H, Joly V L J, Joy P A, Haverkort M W, Wu H, Tanaka A, Lin H J, Chen C T and Tjeng L H 2008 Phys. Rev. B 77 125124
[19] Ge C, Wan X, Pellegrin E, Hu Z, Valvidares M, Barla A, Liang W I, Chu Y H, Zou W and Du Y 2013 Nanoscale 5 10236
[20] Nakagawa T, Takagi Y and Yokoyama T 2012 Phys. Rev. B 86 144418
[21] Tamion A, Raufast C, Hillenkamp M, Bonet E, Jouanguy J, Canut B, Bernstein E, Boisron O, Wernsdorfer W and Dupuis V 2010 Phys. Rev. B 81 144403
[22] Jamet M, Wernsdorfer W, Thirion C, Mailly D, Dupuis V, Mélinon P and Pérez A 2001 Phys. Rev. Lett. 86 4767
[23] Rusponi S, Cren T, Weiss N, Epple M, Buluschek P, Claude L and Brune H 2003 Nat. Mater. 2 546
[24] Del Bianco L, Boscherini F, Fiorini A L, Tamisari M, Spizzo F, Vittori A M and Piscopiello E 2008 Phys. Rev. B 77 094408
[25] Gittleman J I, Abeles B and Bozowski S 1974 Phys. Rev. B 9 3891
[26] Leighton C, Nogueś J, Jonsson-Åkerman B J and Schuller I K 2000 Phys. Rev. Lett. 84 3466
[27] Nogués J, Lederman D, Moran T J and Schuller I K 1996 Phys. Rev. Lett. 76 4624
[28] Domingo N, Testa A M, Fiorani D, Binns C, Baker S and Tejada J 2007 J. Magn. Magn. Mater. 316 155
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[3] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[4] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[5] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[6] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[7] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[8] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[9] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[10] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[11] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[12] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[13] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[14] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[15] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
No Suggested Reading articles found!