Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 026101    DOI: 10.1088/1674-1056/24/2/026101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quartic coupling and its effect on wetting behaviors in nematic liquid crystals

Zeng Ming-Ying (曾明颖)a b, Holger Merlitza, Wu Chen-Xu (吴晨旭)a
a Department of Physics and ITPA, Xiamen University, Xiamen 361005, China;
b College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract  Based on the fact that rubbed groove patterns also affect the anchoring of liquid crystals at substrates, a quartic coupling is included in constructing the surface energy for a liquid crystal cell. The phase diagram and the wetting behaviors of the liquid crystal cell, bounded by surfactant-laden interfaces in a magnetic field perpendicular to the substrate are discussed by taking the quartic coupling into account. The nematic order increases at the surface while it decreases in the bulk as a result of the introduction of quartic substrate-liquid crystal coupling, indicating that the groove anchoring makes the liquid crystal molecules align more orderly near the substrate than away from it. This causes a different wetting behavior: complete wetting.
Keywords:  quartic coupling      surface anchoring energy      phase transition      wetting behavior  
Received:  02 October 2014      Revised:  22 November 2014      Accepted manuscript online: 
PACS:  61.30.Hn (Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374243).
Corresponding Authors:  Wu Chen-Xu     E-mail:  cxwu@xmu.edu.cn

Cite this article: 

Zeng Ming-Ying (曾明颖), Holger Merlitz, Wu Chen-Xu (吴晨旭) Quartic coupling and its effect on wetting behaviors in nematic liquid crystals 2015 Chin. Phys. B 24 026101

[1] Sheng P and Wojtowicz P J 1976 Phys. Rev. A 14 1883
[2] Guan R H and Sun Y B 2006 Chin. Phys. 15 1041
[3] de Gennes P G and Prost J 1993 The Physics of Liquid Crystal, 2nd edn. (Oxford: Oxford Science Publications)
[4] Noonan P S, Shavit A A, Acharya B R and Schwartz D K 2011 Appl. Mater. Interfaces 3 4374
[5] Sohn E H, Lee M and Song K 2013 Macromol. Res. 21 234
[6] Jérôme B 1991 Rep. Prog. Phys. 54 391
[7] Crawford G P, Ondris-Crawford R J, Doane J W and Žumer S 1996 Phys. Rev. E 53 3647
[8] Rapini A and Papoular M 1969 J. Phys. (Paris) Colloq. 30 C4-54
[9] Nobili M and Durand G 1992 Phys. Rev. A 46 R6174
[10] Zhao W, Wu C X and Iwamoto M 2000 Phys. Rev. E 62 R1481
[11] Sugimura A, Luckhurst G R and Ou-Yang Z C 1995 Phys. Rev. E 52 681
[12] Fukuda J I, Yoneya M and Yokoyama H 2007 Phys. Rev. Lett. 98 187803
[13] Fukuda J I, Gway J S, Yoneya M and Yokoyama H 2008 Phys. Rev. E 77 011702
[14] Gway J S, Fukuda J I, Yoneya M and Yokoyama H 2007 Appl. Phys. Lett. 91 073504
[15] Gway J S, Kim J H, Yoneya M and Yokoyama H 2008 Appl. Phys. Lett. 92 153110
[16] Gway J S, Kwon J H, Oh-e M, Niitsuma J, Yoneya M and Yokoyama H 2009 Appl. Phys. Lett. 95 103101
[17] Choi Y, Yokoyama H and Gway J S 2013 Opt. Express 21 12136
[18] Kadivar E 2008 Phys. Rev. E 78 031706
[19] Sheng P 1982 Phys. Rev. A 26 1610
[20] Zeng M Y, Cui W, Tan X Q and Wu C X 2011 Chin. Phys. Lett. 28 066103
[21] Ma H, Onnagawa H, Sugimori S and Toriymama K 2010 Chin. Phys. B 19 076104
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!