Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020204    DOI: 10.1088/1674-1056/24/2/020204
GENERAL Prev   Next  

Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation

Zhang Ran-Ran (张冉冉), Xu Wei (徐伟), Yang Gui-Dong (杨贵东), Han Qun (韩群)
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  In this paper, we consider the response analysis of a Duffing-Rayleigh system with fractional derivative under Gaussian white noise excitation. A stochastic averaging procedure for this system is developed by using the generalized harmonic functions. First, the system state is approximated by a diffusive Markov process. Then, the stationary probability densities are derived from the averaged Itô stochastic differential equation of the system. The accuracy of the analytical results is validated by the results from the Monte Carlo simulation of the original system. Moreover, the effects of different system parameters and noise intensity on the response of the system are also discussed.
Keywords:  response      Duffing-Rayleigh      fractional derivative      stochastic averaging method  
Received:  14 May 2014      Revised:  18 August 2014      Accepted manuscript online: 
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Ca (Noise)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172233, 11302170, and 11302171) and the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2014JQ1001).
Corresponding Authors:  Xu Wei     E-mail:  weixu@nwpu.edu.cn

Cite this article: 

Zhang Ran-Ran (张冉冉), Xu Wei (徐伟), Yang Gui-Dong (杨贵东), Han Qun (韩群) Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation 2015 Chin. Phys. B 24 020204

[1] Li C, Xu W and Wang L S 2013 Chin. Phys. B 22 110205
[2] Su M B and Rong H W 2011 Chin. Phys. B 20 060501
[3] Duan D H, Xu W and Su J 2011 Chin. Phys. B 20 030501
[4] Ling Q, Jin X L and Huang Z L 2011 J. Franklin Inst. 348 2026
[5] Wang M J, Wang X Y and Niu Y J 2011 Chin. Phys. B 20 010508
[6] Wang Z, Huang X and Li N 2012 Chin. Phys. B 21 050506
[7] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[8] Zhang L, Deng K and Luo M K 2012 Chin. Phys. B 21 090505
[9] Liu F, Anh V and Turner I 2004 J. Comput. Appl. Math. 166 209
[10] Liu S D, Fu Z T and Liu S K 2014 Acta Phys. Sin. 63 074701 (in Chinese)
[11] Bagley R L and Torvik P J 1985 AIAA J. 23 918
[12] Guo Z, Leung A Y T and Yang H X 2011 Appl. Math. Modelling 35 3918
[13] Gaul L, Klein P and Kemple S 1989 Mech. Res. Commun. 16 297
[14] Padovan J and Sawicki J T 1998 Nonlinear Dyn. 16 321
[15] Saha Ray S, Chaudhuri K S and Bera R K 2006 Appl. Math. Comput. 182 544
[16] Rossikhin Y A and Shitikova M V 2009 Shock Vib. 16 365
[17] Spanos P D and Evangelatos G I 2010 Soil Dyn. Earthquake Eng. 30 811
[18] Liu D, Xu W and Xu Y 2013 Acta Mech. Sin. 29 443
[19] Ye K, Li L and Tang J X 2003 Earthquake Eng. Eng. Vib. 2 133
[20] Huang Z L and Jin X L 2009 J. Sound Vib. 319 1121
[21] Chen L and Zhu W 2011 Int. J. Non-Linear Mech. 46 1324
[22] Chen L and Zhu W 2011 Probabilistic Eng. Mech. 26 208
[23] Siewe M S, Cao H and Sanjuán M A F 2009 Chaos, Solitons and Fractals 39 1092
[24] Yue X, Xu W and Zhang Y 2012 Nonlinear Dyn. 69 437
[25] Oldham K B and Spanier J 1974 The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (New York: Academic Press)
[26] Xu Z and Cheung Y K 1994 J. Sound Vib. 174 563
[27] Khasminskii R Z 1968 Kybernetika 4 260 (in Russian)
[28] Diethelm K, Ford N J, Freed A D and Luchko Y 2005 Comput. Method Appl. Math. 194 743
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[3] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[4] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
[5] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
[6] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[7] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[8] A minimal model for the auxetic response of liquid crystal elastomers
Bingyu Yu(於冰宇), Yuanchenxi Gao(高袁晨曦), Bin Zheng(郑斌), Fanlong Meng(孟凡龙), Yu Fang(方羽), Fangfu Ye(叶方富), and Zhongcan Ouyang(欧阳钟灿). Chin. Phys. B, 2022, 31(10): 104601.
[9] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[10] Anisotropic photoresponse of layered rhenium disulfide synaptic transistors
Chunhua An(安春华), Zhihao Xu(徐志昊), Jing Zhang(张璟), Enxiu Wu(武恩秀), Xinli Ma(马新莉), Yidi Pang(庞奕荻), Xiao Fu(付晓), Xiaodong Hu(胡晓东), Dong Sun(孙栋), Jinshui Miao(苗金水), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(8): 088503.
[11] Linear and nonlinear optical response of g-C3N4-based quantum dots
Jing-Zhi Zhang(张竞之) and Hong Zhang(张红). Chin. Phys. B, 2021, 30(7): 077802.
[12] Stationary response of colored noise excited vibro-impact system
Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌). Chin. Phys. B, 2021, 30(6): 060501.
[13] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[14] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[15] GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor
Bin Zhang(张彬), Tian-Ci Xie(谢天赐), Zhuang Qin(秦壮), Hao-Peng Li(李昊鹏), Song Li(李松), Wen-Hui Zhao(赵文辉), Zi-Yin Chen(陈子印), Jun Xu(徐军), Elfed Lewis, and Wei-Min Sun(孙伟民). Chin. Phys. B, 2021, 30(4): 048701.
No Suggested Reading articles found!