Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060501    DOI: 10.1088/1674-1056/abf12a
GENERAL Prev   Next  

Stationary response of colored noise excited vibro-impact system

Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌)
State Key Laboratory of Mechanics and Control of Mechanical Structure, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  The generalized cell mapping (GCM) method is used to obtain the stationary response of a single-degree-of-freedom. Vibro-impact system under a colored noise excitation. In order to show the advantage of the GCM method, the stochastic averaging method is also presented. Both of the two methods are tested through concrete examples and verified by the direct numerical simulation. It is shown that the GCM method can well predict the stationary response of this noise-perturbed system no matter whether the noise is wide-band or narrow-band, while the stochastic averaging method is valid only for the wide-band noise.
Keywords:  vibro-impact system      stationary probability density function      stochastic averaging method      generalized cell mapping method  
Received:  08 February 2021      Revised:  04 March 2021      Accepted manuscript online:  24 March 2021
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.10.Gg (Stochastic analysis methods)  
  05.10.Ln (Monte Carlo methods)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11772149), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, China (Grant No. MCMS-I-19G01), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.
Corresponding Authors:  Xiao-Lei Leng     E-mail:  lengxl@nuaa.edu.cn

Cite this article: 

Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌) Stationary response of colored noise excited vibro-impact system 2021 Chin. Phys. B 30 060501

[1] Albert C J and Guo Y 2013 Vibro-Impact Dynamics (Wiley) p. 34
[2] Ibrahim R A 2009 Vibro-Impact Dynamics: Modeling, Mapping and Applications (Berlin, Heidelberg: Springer) p. 22
[3] Whiston G S 1992 J. Sound Vib. 152 427
[4] Afsharfard A 2016 Nonlinear Dyn. 83 1643
[5] Mikhlin Y V, Vakakis A F and Salenger G 1998 J. Sound Vib. 216 227
[6] Wagg D J 2006 Nonlinear Dyn. 43 137
[7] Li F and Ding W C 2010 J. Vib. Shock 25 150
[8] Wagg D J 2005 Int. J. Nonlinear Mech. 40 1076
[9] Zhang Y and Luo G 2013 J. Sound Vib. 332 5462
[10] Guan W L and Xie J H 2003 Acta Mech. Solida Sin. 16 36
[11] Lee Y S, Nucera F, Vakakis A F, McFarland D M and Bergman L A 2009 Physica D 238 1868
[12] Luo G, Chu Y, Zhang Y and Xie J H 2005 Acta Mech. Sin. 21 197
[13] Wehner M F and Wolfer W G 1983 Phys. Rev. A 28 3003
[14] Feng J, Xu W, Rong H and Wang R 2009 Int. J. Nonlinear. Mech. 44 51
[15] Feng J, Xu W and Wang R 2008 J. Sound Vib. 309 730
[16] Huang Z L, Liu Z H, Zhu W Q 2004 J. Sound Vib. 275 223
[17] Dimentberg M F, Gai D O and Naess A 2009 Int. J. Nonlinear. Mech. 44 791
[18] Zhu H, Sun J Q, Zhao Y B and Chen L C 2019 J. Vib. Shock 38 6
[19] Di L, Mei L and Li J 2018 Nonlinear Dyn. 91 1261
[20] Su M, Xu W and Yang G 2019 Mech. Syst. Signal Process 132 748
[21] Li C 2019 Physica A 516 151
[22] Wang D, Xu W, Gu X and Yang Y 2016 Nonlinear Dyn. 86 1
[23] Su M, Xu W and Yang G 2018 Int. J. Bifurc. Chaos 28 1830043
[24] Chen L, Qian J, Zhu H and Sun J Q 2019 J. Sound Vib. 439 260
[25] Hu R, Gu X and Deng Z 2020 Nonlinear Dyn. 101 823
[26] Wang D, Xu W, Gu X and Yang Y 2016 Nonlinear Dyn. 86 891
[27] Zhao X, Xu W, Gu X and Yang Y 2015 Physica A 431 128
[28] Lin Y K and Cai G Q 2004 Probabilistic structural dynamics (McGraw-Hill Professional) p. 138
[29] Hsu C S and Chiu H M 1986 J. Appl. Mech. 53 695
[30] Han Q, Xu W and Yue X 2015 Appl. Math. Mech. 036 329
[31] Yue X L, Wei X, Wang L and Zhou B 2012 Probabilistic Eng. Mech. 30 70
[32] Hong L and Sun J Q 2006 Chaos, Solitons & Fractals 27 895
[33] Sun J Q and Hsu C S 1990 J. Appl. Mech. 57 1018
[34] Li Z, Jiang J and Hong L 2015 Int. J. Bifurc. Chaos 25 1550109
[35] Wang L, Ma S C, Sun C Y, Jin W T and Xu W 2018 J. Appl. Mech. 85 54502
[36] Yue X L, Xu W and Li C 2014 Int. J. Bifurc. Chaos Appl. Sci. Eng. 24 1450129
[37] Roy R V and Nauman E 1995 J. Sound Vib. 183 269
[38] Jing H 1991 Earthq. Eng. Struct. Dyn. 20 667
[39] Zhu W Q, Huang Z L and Suzuki Y 2001 Int. J. Nonlinear Mech. 36 1235
[40] Khasminskii R Z 1966 Theory Probab. Its Appl. 11 390
[41] Lin Y K 1986 Probabilistic Eng. Mech. (McGraw-Hill, Inc) p. 138
[1] Some new advance on the research of stochastic non-smooth systems
Wei Xu(徐伟), Liang Wang(王亮), Jinqian Feng(冯进钤), Yan Qiao(乔艳), Ping Han(韩平). Chin. Phys. B, 2018, 27(11): 110503.
[2] Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise
Wei Li(李伟), Mei-Ting Zhang(张美婷), Jun-Feng Zhao(赵俊锋). Chin. Phys. B, 2017, 26(9): 090501.
[3] Multi-valued responses and dynamic stability of a nonlinear vibro-impact system with a unilateral non-zero offset barrier
Wei Xu(徐伟), Dong-Mei Huang(黄冬梅), Wen-Xian Xie(谢文贤). Chin. Phys. B, 2016, 25(3): 030502.
[4] Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation
Yong-Ge Yang(杨勇歌), Wei Xu(徐伟), Ya-Hui Sun(孙亚辉), Xu-Dong Gu(谷旭东). Chin. Phys. B, 2016, 25(2): 020201.
[5] Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation
Zhang Ran-Ran (张冉冉), Xu Wei (徐伟), Yang Gui-Dong (杨贵东), Han Qun (韩群). Chin. Phys. B, 2015, 24(2): 020204.
[6] Stochastic responses of Duffing–Van der Pol vibro-impact system under additive colored noise excitation
Li Chao (李超), Xu Wei (徐伟), Wang Liang (王亮), Li Dong-Xi (李东喜). Chin. Phys. B, 2013, 22(11): 110205.
[7] Resonance response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random parametric excitation
Su Min-Bang (苏敏邦), Rong Hai-Wu (戎海武). Chin. Phys. B, 2011, 20(6): 060501.
[8] Lyapunov exponent calculation of a two-degree-of-freedom vibro-impact system with symmetrical rigid stops
Li Qun-Hong(李群宏) and Tan Jie-Yan(谭洁燕). Chin. Phys. B, 2011, 20(4): 040505.
[9] Dynamical behaviour of a controlled vibro-impact system
Wang Liang(王亮), Xu Wei(徐伟), and Li Ying(李颖) . Chin. Phys. B, 2008, 17(7): 2446-2450.
No Suggested Reading articles found!