Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020203    DOI: 10.1088/1674-1056/24/2/020203
GENERAL Prev   Next  

Containment consensus with measurement noises and time-varying communication delays

Zhou Feng (周峰), Wang Zheng-Jie (王正杰), Fan Ning-Jun (范宁军)
School of Electromechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  In this paper, we consider the containment consensus control problem for multi-agent systems with measurement noises and time-varying communication delays under directed networks. By using stochastic analysis tools and algebraic graph theory, we prove that the followers can converge to the convex hull spanned by the leaders in the sense of mean square if the allowed upper bound of the time-varying delays satisfies a certain sufficient condition. Moreover, the time-varying delays are asymmetric for each follower agent, and the time-delay-dependent consensus condition is derived. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.
Keywords:  multi-agent systems      containment consensus      noise      communication delays  
Received:  01 November 2014      Revised:  15 November 2014      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.65.+b (Self-organized systems)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11102019), the Aeronautical Science Foundation of China (Grant No. 2013ZC72006), and the Research Foundation of Beijing Institute of Technology, China.
Corresponding Authors:  Wang Zheng-Jie     E-mail:  summit@bit.edu.cn

Cite this article: 

Zhou Feng (周峰), Wang Zheng-Jie (王正杰), Fan Ning-Jun (范宁军) Containment consensus with measurement noises and time-varying communication delays 2015 Chin. Phys. B 24 020203

[1] Cao J F, Ling Z H, Yuan Y F and Cao C 2014 Chin. Phys. B 23 070509
[2] Cavagna A, Giardina I, Ginelli F, Mora T, Piovani D, Tavarone R and Aleksandra M 2014 Phys. Rev. E 89 042707
[3] Guo L X, Hu M F, Hu A H and Xu Z Y 2014 Chin. Phys. B 23 050508
[4] Wang N, Wu Z H and Peng L 2014 Chin. Phys. B 23 108901
[5] Ma Q, Xu S Y and Frank L 2014 Int. J. Robust Nonlin. 24 2560
[6] Xie Y Y, Wang Y and Ma Z J 2014 Acta Phys. Sin. 63 040202 (in Chinese)
[7] Park M J, Lee S M, Son J W, Kwon O M and Cha E J 2013 Chin. Phys. B 22 070506
[8] Wu Z H, Peng L, Xie L B and Wen J W 2013 Chin. Phys. B 22 128901
[9] Meng Z, Ren W and You Z 2010 Automatica 46 2092
[10] Liu H, Xie G and Wang L 2012 Automatica 48 1415
[11] Cao Y, Ren W and Egerstedt M 2012 Automatica 48 1586
[12] Lou Y and Hong Y 2012 Automatica 48 879
[13] Mei J, Ren W and Ma G 2012 Automatica 48 653
[14] Liu S, Xie L and Zhang H 2013 Int. J. Robust Nonlinear Control 24 2803
[15] Zheng Y and Wang L 2014 Int. J. Control 87 1
[16] Wang P and Jia Y 2014 IET Control Theory A 8 277
[17] Liu H, Xie G and Wang L 2012 Syst. Control Lett. 61 528
[18] Li Z, Duan Z, Ren W and Gang F 2014 Int. J. Robust Nonlinear Control http://dx.doi.org/10.1002/rnc.3195
[19] Ma Q and Miao G 2014 Neurocomputing 133 399
[20] Ma Q, Frank L and Xu S Y 2014 Int. J. Robust Nonlinear Control http://dx.doi.org/10:1002/rnc.3124
[21] Li Z, Ren W, Liu X and Fu M 2013 Int. J. Robust Nonlinear Control 23 534
[22] Wen G H, Duan Z, Zhao Y, Yu W and Cao J 2014 Int. J. Control 87 Issue 12, DOI:10.1080/00207179.2014.930930
[23] Li W, Xie L and Zhang J 2013 Proceedings of the 32nd Chinese Control Conference, July 26, Xi'an, China, p. 7330
[24] Liu S, Xie L and Zhang H 2013 IEEE 52nd Annual Conference on Decision and Control, December 10, Firenze, Italy, p. 2186
[25] Yan F and Xie D 2014 T. I. Meas. Control 36 196
[26] Liu K, Xie G and Wang L 2014 Syst. Control Lett. 67 24
[27] Qu Z 2009 Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles (London: Spinger-Verlag) p. 168
[28] Yong J 1999 Stochastic Controls: Hamiltonian Systems and HJB Equations (New York: Springer-Verlag) p. 54
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[5] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[6] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[7] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[8] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[9] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[10] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[11] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[12] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[13] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[14] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[15] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
No Suggested Reading articles found!