Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 016101    DOI: 10.1088/1674-1056/24/1/016101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Growth of PbS nanoclusters on specific sites of programmed oligodeoxynucleotides

Lu Ying (陆颖), Teng Cui-Juan (滕翠娟), Li Ying (李颖), Wang Hui (王惠), Xu Chun-Hua (徐春华), Hu Shu-Xin (胡书新), Li Ming (李明)
Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We develope a method to synthesize PbS nanoclusters (NCs) using guanine-containing oligodeoxynucleotides (ODNs) as templates. The NCs on the ODNs are ultra small (ranging from ~ 0.5 nm to 2.1 nm) and luminescent in the visible region. They are characterized by photoluminescence (PL) spectra, transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). The ODN-NC complexes can be used as customer-designed fluorophores which do not have the problem of multiple conjugations. The same method enables us to fabricate PbS quantum dot molecules and connect them into nanowires, expanding their potential applications in molecule electronics and quantum computing.

Keywords:  PbS nanoclusters      quantum dot molecules      oligodeoxynucleotides      photoluminescence  
Received:  11 August 2014      Revised:  22 September 2014      Accepted manuscript online: 
PACS:  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  87.85.jf (Bio-based materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11104328, 10904164, and 11004234) and the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. kjcx3.syw.n8).

Corresponding Authors:  Hu Shu-Xin     E-mail:  hushuxin@aphy.iphy.ac.cn

Cite this article: 

Lu Ying (陆颖), Teng Cui-Juan (滕翠娟), Li Ying (李颖), Wang Hui (王惠), Xu Chun-Hua (徐春华), Hu Shu-Xin (胡书新), Li Ming (李明) Growth of PbS nanoclusters on specific sites of programmed oligodeoxynucleotides 2015 Chin. Phys. B 24 016101

[1] Medintz I L, Uyeda H T, Goldman E R and Mattoussi H 2005 Nat. Mater. 4 435
[2] Jiang T T, Shao W J, Yin N Q, Liu L, Song J L Q, Zhu L X and Xu X L 2014 Chin. Phys. B 8 086102
[3] Singh N S, Singh S D and Meetei S D 2014 Chin. Phys. B 5 058104
[4] Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R and Weiss S 1996 Proc. Natl. Acad. Sci. USA 93 6264
[5] Barnhill H N, Claudel-Gillet S, Ziessel R, Charbonniere L J and Wang Q 2007 J. Am. Chem. Soc. 129 7799
[6] Liebermann T and Knoll W 2000 Colloids and Surfaces A: Physicochemical and Engineering Aspects 171 115
[7] Lakowicz J R 1999 Principles of Fluorescence Spectroscope (2nd edn.) (New York: Kluwer Academic)
[8] Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
[9] Qu L, Peng Z A and Peng X 2001 Nano Lett. 1 333
[10] Alivisatos A P 1996 Science 271 933
[11] Gao Y H, Wei L, Gao C L, Xia W X and Shindo D 2010 Chin. Phys. B 8 088103
[12] Levina L, Sukhovatkin W, Musikhin S, Cauchi S, Nisman R, Bazett-Jones D P and Sargent E H 2005 Adv. Mater. 17 1854
[13] Ma N, Yang J, Stewart K M and Kelley S O 2007 Langmuir 23 12783
[14] Ma N, Sargent E H and Kelley S O 2008 Nat. Nanotechnol. 4 121
[15] Petty J T, Zheng J, Hud N V and Dickson R M 2004 J. Am. Chem. Soc. 126 5207
[16] Ennifar E, Walter P and Dumas P 2003 Nucleic Acids Res. 31 2671
[17] Hinds S, Taft B J, Levina L, Sukhovatkin V, Dooley C J, Roy M S, MacNeil D D, Sargent E H and Kelley S O 2006 J. Am. Chem. Soc. 128 64
[18] Wang L J, Rastelli A, Kiravittaya S, Benyoucef M and Schmidt O G 2009 Adv. Mater. 21 2601
[19] Zhu Q, Karlsson K F, Byszewski M, Rudra A, Pelucchi E, He Z B and Kapon E 2009 Small 5 329
[20] Chen S W, Truax L A and Sommers J M 2000 Chem. Mater. 12 3864
[21] Kane R S, Cohen R E and Silbey R 1996 J. Phys. Chem. 100 7928
[22] Berry C R 1967 Phys. Rev. 161 848
[23] Wang Y, Suna A, Mahler W and Kasowski R 1987 J. Chem. Phys. 87 7315
[24] Moreels I, Lambert K, Smeets D, Muynck D D, Nollet T, Martins J C, Vanhaecke F, Vantomme A, Delerue C, Allan G and Hens Z 2009 ACS Nano 3 3023
[25] Wang Y and Herron N 1991 J. Phys. Chem. 95 525
[26] Evans C M, Guo L and Peterson J J 2008 Nano Lett. 8 2896
[27] Qu L H, Yu W W and Peng X G 2004 Nano Lett. 4 465
[28] Bowers M J, McBride J R and Rosenthal S J 2005 J. Am. Chem. Soc. 127 15378
[29] Bhunia A K, Samanta P K, Saha S and Kamilya T 2014 Appl. Phys. Lett. 104 123703
[30] Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (3rd edn.) (Boston: Springer Science, Business Media) pp. 27-61
[31] Patel S A, Richards C I, Hsiang J C and Dickson R M 2008 J. Am. Chem. Soc. 130 11602
[32] Xu C, Zipfel W, Shear J B, Williams R M and Web W W 1996 Proc. Natl. Acad. Sci. USA 93 10763
[33] Zipfel W R, Williams R M and Webb W W 2003 Nat. Biotechnol. 21 1368
[34] Moreels I, Lambert K, Smeets D, Muynck D D, Nollet T, Martins J C, Vanhaecke F, Vantomme A, Delerue C, Allan G and Hens Z 2009 ACS Nano 3 3023
[35] Ma N, Dooley C J and Kelley S O 2006 J. Am. Chem. Soc. 128 12598
[36] Mirkin C A, Letsinger R L, Mucic R C and Storhoff J J 1996 Nature 382 607
[37] Lee J K, Jung Y H, Stoltenberg R M, Tok J B H and Bao Z 2008 J. Am. Chem. Soc. 130 12854
[38] Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O and Forchel A 2001 Science 291 451
[39] Oosterkamp T H, Fujisawa T, van der Wiel W G, Ishibashi K, Hijman R V, Tarucha S and Kouwenhoven L P 1998 Nature 395 873
[40] Jeong H, Chang A M and Melloch M R 2001 Science 293 2221
[41] Lin Z R, Guo G P and Tu T 2008 Phys. Rev. Lett. 101 230501
[42] Kim D, Economou S E, Tefan S, Badescu C, Scheibner M, Bracker A S, Bashkansky M, Reinecke T L, Gammon D, Zhu F Y and Guo G C 2008 Phys.Rev. Lett. 101 236804
[43] Yan A C, Bell K M, Breeden M M and Ellington A D 2005 Front. Biosci. 10 1802
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!