CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Growth of PbS nanoclusters on specific sites of programmed oligodeoxynucleotides |
Lu Ying (陆颖), Teng Cui-Juan (滕翠娟), Li Ying (李颖), Wang Hui (王惠), Xu Chun-Hua (徐春华), Hu Shu-Xin (胡书新), Li Ming (李明) |
Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We develope a method to synthesize PbS nanoclusters (NCs) using guanine-containing oligodeoxynucleotides (ODNs) as templates. The NCs on the ODNs are ultra small (ranging from ~ 0.5 nm to 2.1 nm) and luminescent in the visible region. They are characterized by photoluminescence (PL) spectra, transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). The ODN-NC complexes can be used as customer-designed fluorophores which do not have the problem of multiple conjugations. The same method enables us to fabricate PbS quantum dot molecules and connect them into nanowires, expanding their potential applications in molecule electronics and quantum computing.
|
Received: 11 August 2014
Revised: 22 September 2014
Accepted manuscript online:
|
PACS:
|
61.46.Bc
|
(Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
87.85.jf
|
(Bio-based materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104328, 10904164, and 11004234) and the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. kjcx3.syw.n8). |
Corresponding Authors:
Hu Shu-Xin
E-mail: hushuxin@aphy.iphy.ac.cn
|
Cite this article:
Lu Ying (陆颖), Teng Cui-Juan (滕翠娟), Li Ying (李颖), Wang Hui (王惠), Xu Chun-Hua (徐春华), Hu Shu-Xin (胡书新), Li Ming (李明) Growth of PbS nanoclusters on specific sites of programmed oligodeoxynucleotides 2015 Chin. Phys. B 24 016101
|
[1] |
Medintz I L, Uyeda H T, Goldman E R and Mattoussi H 2005 Nat. Mater. 4 435
|
[2] |
Jiang T T, Shao W J, Yin N Q, Liu L, Song J L Q, Zhu L X and Xu X L 2014 Chin. Phys. B 8 086102
|
[3] |
Singh N S, Singh S D and Meetei S D 2014 Chin. Phys. B 5 058104
|
[4] |
Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R and Weiss S 1996 Proc. Natl. Acad. Sci. USA 93 6264
|
[5] |
Barnhill H N, Claudel-Gillet S, Ziessel R, Charbonniere L J and Wang Q 2007 J. Am. Chem. Soc. 129 7799
|
[6] |
Liebermann T and Knoll W 2000 Colloids and Surfaces A: Physicochemical and Engineering Aspects 171 115
|
[7] |
Lakowicz J R 1999 Principles of Fluorescence Spectroscope (2nd edn.) (New York: Kluwer Academic)
|
[8] |
Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
|
[9] |
Qu L, Peng Z A and Peng X 2001 Nano Lett. 1 333
|
[10] |
Alivisatos A P 1996 Science 271 933
|
[11] |
Gao Y H, Wei L, Gao C L, Xia W X and Shindo D 2010 Chin. Phys. B 8 088103
|
[12] |
Levina L, Sukhovatkin W, Musikhin S, Cauchi S, Nisman R, Bazett-Jones D P and Sargent E H 2005 Adv. Mater. 17 1854
|
[13] |
Ma N, Yang J, Stewart K M and Kelley S O 2007 Langmuir 23 12783
|
[14] |
Ma N, Sargent E H and Kelley S O 2008 Nat. Nanotechnol. 4 121
|
[15] |
Petty J T, Zheng J, Hud N V and Dickson R M 2004 J. Am. Chem. Soc. 126 5207
|
[16] |
Ennifar E, Walter P and Dumas P 2003 Nucleic Acids Res. 31 2671
|
[17] |
Hinds S, Taft B J, Levina L, Sukhovatkin V, Dooley C J, Roy M S, MacNeil D D, Sargent E H and Kelley S O 2006 J. Am. Chem. Soc. 128 64
|
[18] |
Wang L J, Rastelli A, Kiravittaya S, Benyoucef M and Schmidt O G 2009 Adv. Mater. 21 2601
|
[19] |
Zhu Q, Karlsson K F, Byszewski M, Rudra A, Pelucchi E, He Z B and Kapon E 2009 Small 5 329
|
[20] |
Chen S W, Truax L A and Sommers J M 2000 Chem. Mater. 12 3864
|
[21] |
Kane R S, Cohen R E and Silbey R 1996 J. Phys. Chem. 100 7928
|
[22] |
Berry C R 1967 Phys. Rev. 161 848
|
[23] |
Wang Y, Suna A, Mahler W and Kasowski R 1987 J. Chem. Phys. 87 7315
|
[24] |
Moreels I, Lambert K, Smeets D, Muynck D D, Nollet T, Martins J C, Vanhaecke F, Vantomme A, Delerue C, Allan G and Hens Z 2009 ACS Nano 3 3023
|
[25] |
Wang Y and Herron N 1991 J. Phys. Chem. 95 525
|
[26] |
Evans C M, Guo L and Peterson J J 2008 Nano Lett. 8 2896
|
[27] |
Qu L H, Yu W W and Peng X G 2004 Nano Lett. 4 465
|
[28] |
Bowers M J, McBride J R and Rosenthal S J 2005 J. Am. Chem. Soc. 127 15378
|
[29] |
Bhunia A K, Samanta P K, Saha S and Kamilya T 2014 Appl. Phys. Lett. 104 123703
|
[30] |
Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (3rd edn.) (Boston: Springer Science, Business Media) pp. 27-61
|
[31] |
Patel S A, Richards C I, Hsiang J C and Dickson R M 2008 J. Am. Chem. Soc. 130 11602
|
[32] |
Xu C, Zipfel W, Shear J B, Williams R M and Web W W 1996 Proc. Natl. Acad. Sci. USA 93 10763
|
[33] |
Zipfel W R, Williams R M and Webb W W 2003 Nat. Biotechnol. 21 1368
|
[34] |
Moreels I, Lambert K, Smeets D, Muynck D D, Nollet T, Martins J C, Vanhaecke F, Vantomme A, Delerue C, Allan G and Hens Z 2009 ACS Nano 3 3023
|
[35] |
Ma N, Dooley C J and Kelley S O 2006 J. Am. Chem. Soc. 128 12598
|
[36] |
Mirkin C A, Letsinger R L, Mucic R C and Storhoff J J 1996 Nature 382 607
|
[37] |
Lee J K, Jung Y H, Stoltenberg R M, Tok J B H and Bao Z 2008 J. Am. Chem. Soc. 130 12854
|
[38] |
Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O and Forchel A 2001 Science 291 451
|
[39] |
Oosterkamp T H, Fujisawa T, van der Wiel W G, Ishibashi K, Hijman R V, Tarucha S and Kouwenhoven L P 1998 Nature 395 873
|
[40] |
Jeong H, Chang A M and Melloch M R 2001 Science 293 2221
|
[41] |
Lin Z R, Guo G P and Tu T 2008 Phys. Rev. Lett. 101 230501
|
[42] |
Kim D, Economou S E, Tefan S, Badescu C, Scheibner M, Bracker A S, Bashkansky M, Reinecke T L, Gammon D, Zhu F Y and Guo G C 2008 Phys.Rev. Lett. 101 236804
|
[43] |
Yan A C, Bell K M, Breeden M M and Ellington A D 2005 Front. Biosci. 10 1802
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|