Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 126105    DOI: 10.1088/1674-1056/23/12/126105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Raman spectrum study of graphite irradiated by swift heavy ions

Zhai Peng-Fei (翟鹏飞)a, Liu Jie (刘杰)a, Zeng Jian (曾健)a b c, Yao Hui-Jun (姚会军)a, Duan Jing-Lai (段敬来)a, Hou Ming-Dong (侯明东)a, Sun You-Mei (孙友梅)a, Ewing Rodney Charlesd
a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;
d Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA
Abstract  Highly oriented pyrolytic graphites are irradiated with 40.5-MeV and 67.7-MeV 112Sn-ions in a wide range of fluences: 1× 1011 ions/cm2–1× 1014 ions/cm2. Raman spectra in the region between 1200 cm-1 and 3500 cm-1 show that the disorder induced by Sn-ions increases with ion fluence increasing. However, for the same fluence, the amount of disorder is greater for 40.5-MeV Sn-ions than that observed for 67.7-MeV Sn-ions, even though the latter has a slightly higher value for electronic energy loss. This is explained by the ion velocity effect. Importantly, ~ 3-cm-1 frequency shift toward lower wavenumber for the D band and ~ 6-cm-1 shift toward lower wavenumber for the 2D band are observed at a fluence of 1× 1014 ions/cm2, which is consistent with the scenario of radiation-induced strain. The strain formation is interpreted in the context of inelastic thermal spike model, and the change of the 2D band shape at high ion fluence is explained by the accumulation of stacking faults of the graphene layers activated by radiation-induced strain around ion tracks. Moreover, the hexagonal structure around the ion tracks is observed by scanning tunneling microscopy, which confirms that the strains near the ion tracks locally cause electronic decoupling of neighboring graphene layers.
Keywords:  Raman spectroscopy      swift heavy ions      highly oriented pyrolytic graphite      strain      ion velocity effect  
Received:  26 March 2014      Revised:  27 June 2014      Accepted manuscript online: 
PACS:  61.82.-d (Radiation effects on specific materials)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11179003, 10975164, 10805062, and 11005134).
Corresponding Authors:  Liu Jie     E-mail:  j.liu@impcas.ac.cn

Cite this article: 

Zhai Peng-Fei (翟鹏飞), Liu Jie (刘杰), Zeng Jian (曾健), Yao Hui-Jun (姚会军), Duan Jing-Lai (段敬来), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Ewing Rodney Charles Raman spectrum study of graphite irradiated by swift heavy ions 2014 Chin. Phys. B 23 126105

[1]Elman B S, Shayegan M, Dresselhaus M S, Mazurek H and Dresselhaus G 1982 Phys. Rev. B 25 4142
[2]Nakamura K and Kitajima M 1992 Phys. Rev. B 45 78
[3]Dunlop A, Jaskierowicz G, Ossi P M and Della-Negra S 2007 Phys. Rev. B 76 155403
[4]Liu J, Neumann R, Trautmann C and Müller C 2001 Phys. Rev. B 64 184115
[5]Liu J, Hou M D, Trautmann C, Neumann R, Müller C, Wang Z G, Zhang Q X, Sun Y M, Jin Y F, Liu H W and Gao H J 2003 Nucl. Instrum. Method B 212 303
[6]Fu Y C, Jin Y F, Yao C F and Zhang C H 2009 Chin. Phys. Lett. 26 016101
[7]Glasmacher U A, Lang M, Keppler H, Langenhorst F, Neumann R, Schardt D, Trautmann C and Wagner G A 2006 Phys. Rev. Lett. 96 195701
[8]Meftah A, Brisard F, Costatini J M, Hage-Ali M, Stoquert J P, Studer F and Toulemonde M 1993 Phys. Rev. B 48 920
[9]Gaiduk P I, Larsen A N, Hansen J L, Trautmann C and Toulemonde M 2003 Appl. Phys. Lett. 83 1746
[10]Wang Z G, Dufour Ch, Cabeau B, Dural J, Fuchs G, Paumier E, Pawlak F and Toulemonde M 1996 Nucl. Instrum. Method B 107 175
[11]Ishikawa N, Iwase A, Chimi Y, Michikami O, Wakana H, Hashimoto T, Kambara T, Müller C and Neumann R 2002 Nucl. Instrum. Method B 193 278
[12]Toulemonde M, Trautmann C, Balanzat E, Hjort K and Weidinger A 2004 Nucl. Instrum. Method B 216 1
[13]Zhai P F, Liu J, Duan J L, Chang H L, Zeng J, Hou M D and Sun Y M 2011 Nucl. Instrum. Method B 269 2035
[14]Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancçado L G, Jorio A and Saito R 2007 Phys. Chem. Chem. Phys. 9 1276
[15]Cançado L G, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, Jorio A, Coelho L N, Magalhaes-Paniago R and Pimenta M A 2006 Appl. Phys. Lett. 88 163106
[16]Cançado L G, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, Speziali N L, Jorio A and Pimenta M A 2008 Carbon 46 272
[17]Cançado L G, Pimenta M A, Neves B R A, Dantas M S S and Jorio A 2004 Phys. Rev. Lett. 93 247401
[18]Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[19]Tuinstra F and Koenig J L 1970 J. Chem. Phys. 53 1126
[20]Ziegler J F 2004 Nucl. Instrum. Method B 219-220 1027
[21]Asari E, Kamioka I, Nakamura K G, Kawabe T, Lewis W A and Kitajima M 1994 Phys. Rev. B 49 1011
[22]Ferrari A C and Basko D M 2013 Nat. Nanotech. 8 235
[23]Thomsen C and Reich S 2000 Phys. Rev. Lett. 85 5214
[24]Neumanich R J and Solin S A 1979 Phys. Rev. B 20 392
[25]Kawashima Y and Katagiri G 1995 Phys. Rev. B 52 10053
[26]Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K and Ferrari A C 2009 Phys. Rev. B 79 205433
[27]del Corro E, Taravillo M and Baonza V G 2012 Phys. Rev. B 85 033407
[28]Vetter J, Scholz R, Dobrev D and Nistor L 1998 Nucl. Instrum. Method B 141 747
[29]Steinbeck J, Dresselhaus G and Dresselhaus M S 1990 Int. J. Thermophys. 11 789
[30]Enquist H, Navirian H, Hansen T N, Lindenberg A M, Sondhauss P, Synnergren O, Wark J S and Larsson J 2007 Phys. Rev. Lett. 98 225502
[31]Nüske R, Jurgilaitis A, Enquist H, Harb M, Fang Y, Hakanson U and Larsson J 2012 Appl. Phys. Lett. 100 043102
[32]Lespade P, Marchand A, Couzi M and Cruege F 1984 Carbon 22 375
[33]Tomanek D and Louie S G 1988 Phys. Rev. B 37 8327
[34]Tomanek D, Louie S G, Mamin H J, Abraham D W, Thomson R E, Ganz E and Clarke J 1987 Phys. Rev. B 35 7790
[35]Stolyarova E, Rim K T, Ryu S, Maultzsch J, Kim P, Brus L E, Heinz T F, Hybertsen M S and Flynn G W 2007 Proc. Natl. Acad. Sci. USA 104 9209
[36]Wong H S, Durkan C and Chandrasekhar N 2009 ACS Nano 3 3455
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[7] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[8] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[15] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
No Suggested Reading articles found!