|
|
Experimental realization of one-dimensional optical quantum walks |
Xue Peng (薛鹏)a b, Qin Hao (秦豪)a, Tang Bao (唐宝)a, Zhan Xiang (詹翔)a, Bian Zhi-Hao (边志浩)a, Li Jian (李剑)a |
a Department of Physics, Southeast University, Nanjing 211189, China;
b State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China |
|
|
Abstract We analyze the process of a discrete-time quantum walk over 4 steps and 5 positions with linear optics elements. The quantum walk is characterized by a ballistic spread of wavepackets along 4 steps. By employing different initial coin states, we observe non-Gaussian distribution of the walkers' finial position, which characterizes a quadratic enhancement of the spread of photon wavepackets compared to a classical random walk. By introducing controllable decoherence, we observe the quantum-to-classical transmission in a quantum walk architecture.
|
Received: 22 April 2014
Revised: 28 May 2014
Accepted manuscript online:
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
05.40.Fb
|
(Random walks and Levy flights)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174052 and 11474049), the National Basic Research Development Program of China (Grant No. 2011CB921203), and the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University, China. |
Corresponding Authors:
Xue Peng
E-mail: gnep.eux@gmail.com
|
Cite this article:
Xue Peng (薛鹏), Qin Hao (秦豪), Tang Bao (唐宝), Zhan Xiang (詹翔), Bian Zhi-Hao (边志浩), Li Jian (李剑) Experimental realization of one-dimensional optical quantum walks 2014 Chin. Phys. B 23 110307
|
[1] |
Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
|
[2] |
Ambainis A 2003 International Journal of Quantum Information 1 507
|
[3] |
Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A Proc. 35th ACM Symposium on Theory of Computing (STOC 2003) 59
|
[4] |
Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
|
[5] |
Kempe J 2003 Contemporary Physics 44 307
|
[6] |
Anderson P W 1958 Phys. Rev. 109 1492
|
[7] |
Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
|
[8] |
Zhang R, Xue P and Twamley J 2014 Phys. Rev. A 89 042317
|
[9] |
Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312
|
[10] |
Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
|
[11] |
Oliveira A C, Portugal R and Donangelo R 2006 Phys. Rev. A 74 012312
|
[12] |
Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2003 Phys. Rev. A 67 042316
|
[13] |
Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
|
[14] |
Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
|
[15] |
Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
|
[16] |
Cote R, Russell A, Eyler E E and Gould P L 2006 New J. Phys. 8 156
|
[17] |
Bouwmeester D, Marzoli I, Karman W, Schleich G P and Woerdman J P 1999 Phys. Rev. A 61 013410
|
[18] |
Peruzzo A, Lobino M, Matthews J C F, Matsuda N, Politi A, Poulios K, Zhou X, Lahini Y, Ismail N, Worhoff K, Bromberg Y, Silberberg Y, Thompson M G and O'Brien J L 2010 Science 329 1500
|
[19] |
Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R and Silberberg Y 2008 Phys. Rev. Lett. 100 170506
|
[20] |
Schreiber A, Gábris A, Rohde P P, Laiho K, Štefaňák M, Potoček V, Hamilton C, Jex I and Silberhorn Ch 2010Science 336 55
|
[21] |
Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
|
[22] |
Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I, Silberhorn Ch 2010 Phys. Rev. Lett. 104 050502
|
[23] |
Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
|
[24] |
Xue P, Qin H, Tang B and Sanders B C 2014 New J. Phys. 16 053009
|
[25] |
Xue P, Qin H and Tang B 2014 Sci. Rep. 4 4825
|
[26] |
Xue P and Sanders B C 2008 New J. Phys. 10 053025
|
[27] |
Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
|
[28] |
Xue P, Sanders B C, Blais A and Lalumiére K 2008 Phys. Rev. A 78 042334
|
[29] |
Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
|
[30] |
Xue P 2013 J. Comput. Theor. Nanosci. 10 1606
|
[31] |
Qin H and Xue P 2013 Chin. Phys. B 23 010301
|
[32] |
Mosley P J, Croke S, Walmsley I A, Barnett S M 2006 Phys. Rev. Lett. 97 193601
|
[33] |
Do B, Stohler M L, Balasubramanian S, Elliott D S, Eash C, Fischbach E, Fischbach M A, Mills A and Zwickl B 2005 J. Opt. Soc. Am. B 22 499
|
[34] |
Zhang P, Ren X F, Zou X B, Liu B H, Huang Y F and Guo G C 2007 Phys. Rev. A 75 052310
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|