Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110307    DOI: 10.1088/1674-1056/23/11/110307
GENERAL Prev   Next  

Experimental realization of one-dimensional optical quantum walks

Xue Peng (薛鹏)a b, Qin Hao (秦豪)a, Tang Bao (唐宝)a, Zhan Xiang (詹翔)a, Bian Zhi-Hao (边志浩)a, Li Jian (李剑)a
a Department of Physics, Southeast University, Nanjing 211189, China;
b State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  We analyze the process of a discrete-time quantum walk over 4 steps and 5 positions with linear optics elements. The quantum walk is characterized by a ballistic spread of wavepackets along 4 steps. By employing different initial coin states, we observe non-Gaussian distribution of the walkers' finial position, which characterizes a quadratic enhancement of the spread of photon wavepackets compared to a classical random walk. By introducing controllable decoherence, we observe the quantum-to-classical transmission in a quantum walk architecture.
Keywords:  quantum walk      quantum-to-classical transmission      decoherence  
Received:  22 April 2014      Revised:  28 May 2014      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  05.40.Fb (Random walks and Levy flights)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174052 and 11474049), the National Basic Research Development Program of China (Grant No. 2011CB921203), and the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University, China.
Corresponding Authors:  Xue Peng     E-mail:  gnep.eux@gmail.com

Cite this article: 

Xue Peng (薛鹏), Qin Hao (秦豪), Tang Bao (唐宝), Zhan Xiang (詹翔), Bian Zhi-Hao (边志浩), Li Jian (李剑) Experimental realization of one-dimensional optical quantum walks 2014 Chin. Phys. B 23 110307

[1] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[2] Ambainis A 2003 International Journal of Quantum Information 1 507
[3] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A Proc. 35th ACM Symposium on Theory of Computing (STOC 2003) 59
[4] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[5] Kempe J 2003 Contemporary Physics 44 307
[6] Anderson P W 1958 Phys. Rev. 109 1492
[7] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
[8] Zhang R, Xue P and Twamley J 2014 Phys. Rev. A 89 042317
[9] Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312
[10] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
[11] Oliveira A C, Portugal R and Donangelo R 2006 Phys. Rev. A 74 012312
[12] Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2003 Phys. Rev. A 67 042316
[13] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
[14] Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[15] Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
[16] Cote R, Russell A, Eyler E E and Gould P L 2006 New J. Phys. 8 156
[17] Bouwmeester D, Marzoli I, Karman W, Schleich G P and Woerdman J P 1999 Phys. Rev. A 61 013410
[18] Peruzzo A, Lobino M, Matthews J C F, Matsuda N, Politi A, Poulios K, Zhou X, Lahini Y, Ismail N, Worhoff K, Bromberg Y, Silberberg Y, Thompson M G and O'Brien J L 2010 Science 329 1500
[19] Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R and Silberberg Y 2008 Phys. Rev. Lett. 100 170506
[20] Schreiber A, Gábris A, Rohde P P, Laiho K, Štefaňák M, Potoček V, Hamilton C, Jex I and Silberhorn Ch 2010Science 336 55
[21] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
[22] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I, Silberhorn Ch 2010 Phys. Rev. Lett. 104 050502
[23] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
[24] Xue P, Qin H, Tang B and Sanders B C 2014 New J. Phys. 16 053009
[25] Xue P, Qin H and Tang B 2014 Sci. Rep. 4 4825
[26] Xue P and Sanders B C 2008 New J. Phys. 10 053025
[27] Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
[28] Xue P, Sanders B C, Blais A and Lalumiére K 2008 Phys. Rev. A 78 042334
[29] Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
[30] Xue P 2013 J. Comput. Theor. Nanosci. 10 1606
[31] Qin H and Xue P 2013 Chin. Phys. B 23 010301
[32] Mosley P J, Croke S, Walmsley I A, Barnett S M 2006 Phys. Rev. Lett. 97 193601
[33] Do B, Stohler M L, Balasubramanian S, Elliott D S, Eash C, Fischbach E, Fischbach M A, Mills A and Zwickl B 2005 J. Opt. Soc. Am. B 22 499
[34] Zhang P, Ren X F, Zou X B, Liu B H, Huang Y F and Guo G C 2007 Phys. Rev. A 75 052310
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[3] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[4] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[5] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[8] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
[9] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[10] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[11] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[12] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[13] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[14] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[15] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
No Suggested Reading articles found!