Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110206    DOI: 10.1088/1674-1056/23/11/110206
GENERAL Prev   Next  

Confined subdiffusion in three dimensions

Qin Shan-Lin (覃善林), He Yong (何勇)
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Institute of Super Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410012, China
Abstract  Three-dimensional (3D) Fick's diffusion equation and fractional diffusion equation are solved for different reflecting boundaries. We use the continuous time random walk model (CTRW) to investigate the time-averaged mean square displacement (MSD) of a 3D single particle trajectory. Theoretical results show that the ensemble average of the time-averaged MSD can be expressed analytically by a Mittag-Leffler function. Our new expression is in agreement with previous formulas in two limiting cases: <δ2> ~Δ in short lag time and <δ2>~Δ1-α in long lag time. We also simulate the experimental data of mRNA diffusion in living E. coli using a 3D CTRW model under confined and crowded conditions. The simulation results are well consistent with experimental results. The calculations of power spectral density (PSD) further indicate the subdiffsive behavior of an individual trajectory.
Keywords:  confined subdiffusion      three dimensions      time-averaged mean squared displacement  
Received:  19 March 2014      Revised:  20 May 2014      Accepted manuscript online: 
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.10.Gg (Stochastic analysis methods)  
  05.20.Dd (Kinetic theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21153002) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2013zzts151).
Corresponding Authors:  He Yong     E-mail:  liuxizhong123@163.com

Cite this article: 

Qin Shan-Lin (覃善林), He Yong (何勇) Confined subdiffusion in three dimensions 2014 Chin. Phys. B 23 110206

[1] Dupont A, Gorelashvili M, Schüller V, Wehnekamp F, Arcizet D, Katayama Y, Lamb D C and Heinrich D 2013 New J. Phys. 15 075008
[2] Juette M F, Rivera-Molina F E, Toomre D K and Bewersdorf J 2013 Appl. Phys. Lett. 102 173702
[3] Liu S L, Li J C, Zhang Z L, Wang Z G, Tian Z Q, Wang G P and Pang D W 2013 Scientfic Reports 3 2462
[4] Dupont A and Lamb D C 2011 Nanoscale 3 4532
[5] Ruthardt N, Lamb D C and Bräuchle C 2011 Mol. Ther. 19 1199
[6] Thompsona M A, Casolarib J M, Badieirostamia M, Brownb P O and Moernera W E 2010 Proc. Natl. Acad. Sci. 107 17864
[7] Wang X L, Zhang X H, Wei K J, Sun B and Li M 2007 Acta Phys. Sin. 57 3905 (in Chinese)
[8] Wells N P, Lessard G A, Goodwin P M, Phipps M E, Cutler P J, Lidke D S, Wilson B S and Werner J H 2010 Nano Lett. 10 4732
[9] Sun Y, McKenna J D, Murray J M, Ostap E M and Goldman Y E 2010 Nano Lett. 10 4732
[10] Bräuchle C, Lamb D C and Michaelis J 2010 Single Particle Tracking and Single Molecule Energy Transfer (Weinheim: Wiley-VCH)
[11] Phillips R, Kondev J and Theriot J 2009 Physical Biology of the Cell (Garland Science, Taylor and Francis Group LLC )
[12] Höfling F and Franosch T 2013 Rep. Prog. Phys. 76 046602
[13] Sokolov I M 2012 Soft Matter 8 9043
[14] Barkai E, Garini Y and Metzler R 2012 Phys. Today 65 29
[15] Burov S, Jeon J, Metzler R and Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800
[16] Hellmann M, Klafter J, Heermann D W and Weiss M 2011 J. Phys.: Condens. Matter 23 234113
[17] Mandelbrot B B and Ness J W V 1968 SIAM Rev. 10 422
[18] Kou S C and Xie X S 2004 Phys. Rev. Lett. 93 180603
[19] Goychuk I 2007 Phys. Rev. E 76 040102
[20] Goychuk I 2009 Phys. Rev. E 80 046125
[21] Langevin P 1908 C. R. Hebd. Seances. Acad. Sci. 146 530
[22] Yang H J, Zhuo Y Z and Wu X Z 1994 Acta Phys. Sin. 3 539 (in Chinese)
[23] Jeon J H and Metzler R 2010 Phys. Rev. E 81 021103
[24] Min W, Luo G, Cherayil B J, Kou S C and Xie X S 2005 Phys. Rev. Lett. 94 198302
[25] Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167
[26] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[27] Bouchaud J P and Georges A 1990 Phys. Rep. 195 127
[28] Klafter J and Sokolov I M 2011 First Step in Random Walks (Oxford: Oxford University Press)
[29] Lin F and Bao J D 2011 Chin. Phys. B 20 040502
[30] Liu J and Bao J D 2013 Chin. Phys. Lett. 30 020202
[31] Lorentz H A 1905 Arch. Neerl. Sci. Exact Natur. 10 336
[32] Havlin S and Ben-Avraham D 1987 Adv. Phys. 36 695
[33] Saxton M J 1994 Biophys. J. 66 394
[34] Franosch T, Höfling F, Bauer T and Frey E 2010 Chem. Phys. 375 540
[35] Regner B M, Bučinić D, Domnisoru C, Bartol T M, Hetzer M W, Tartakovsky D M and Sejnowski T J 2013 Biophys. J. 104 1652
[36] Elcock A H 2010 Curr. Opin. Struct. Biol. 20 196
[37] He Y, Burov S, Metzler R and Barkai E 2008 Phys. Rev. Lett. 101 058101
[38] Metziler R, Tejedor V, Jeon J H, He Y, Deng W H, Burov S and Barkai E 2009 Acta Phys. Polon. B 40 1315
[39] Golding I and Cox E C 2006 Phys. Rev. Lett. 96 098102
[40] Sokolov I M 2008 Physics 1 8
[41] Neusius T, Sokolov I M and Smith J C 2009 Phys. Rev. E 80 011109
[42] Jeon J H and Metzler R 2012 Phys. Rev. E 85 021147
[43] Froemberg D and Barkai E 2013 Phys. Rev. E 87 030104
[44] Burov S, Metzler R and Barkai 2010 Proc. Natl. Acad. Sci. 107 13228
[45] Jeon J H, Tejedor V, Burov S, Barkai E, Christine S U, Kirstine B S, Lene O and Metzler R 2011 Phys. Rev. Lett. 106 048103
[46] Schulz J H P, Barkai E and Metzler R 2013 Phys. Rev. Lett. 110 020602
[47] Miyaguchi T and Akimoto T 2013 Phys. Rev. E 87 032130
[48] Chang F X, Chen J and Huang W 2004 Acta Phys. Sin. 54 1113 (in Chinese)
[49] Oldham K B and Spanier J 1974 The Fractional Calculus (New York: Academic Press)
[50] Metzler R and Klafter J 2000 Physica A 278 107
[51] Sokolov I M, Blumen A and Klafter J 2001 Europhys. Lett. 175 56
[52] Podlubny I 1999 Fractional Differential Equation (California: Academic Press)
[53] Jeon J H, Tejedor V and Burov S 2011 Phys. Rev. Lett. 106 048103
[54] Haubold H J, Mathai A M and Saxena R K 2011 J. Appl. Math. 2011 51
[55] Burov S, Jeon J H, Metzler R and Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800
[56] Weigela A V, Tamkunb M M and Krapfa D 2013 Proc. Natl. Acad. Sci. 110 E4591
[57] Burova S, Ali Tabeia S M, Huynhb T, Murrellc M P, Philipsond L H, Ricea S A, Gardela M L, Scherera N F and Dinnera A R 2013 Proc. Natl. Acad. Sci. 110 19689
[58] Ali Tabeia S M, Burova S, Kima H Y, Kuznetsovd A, Huynha T, Jurellerc J, Philipsond L H, Dinnera A R and Scherera N F 2013 Proc. Natl. Acad. Sci. 110 4911
[59] Mantegna R N, Stanley H E and Ebrary 2000 An Introduction to Econophysics Correlations and Complexity in Finance (Cambridge: Cambridge University Press)
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[3] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force
Jinlian Jiang(姜金连), Wei Xu(徐伟), Ping Han(韩平), and Lizhi Niu(牛立志). Chin. Phys. B, 2022, 31(6): 060203.
[6] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[7] Viewing the noise propagation mechanism in a unidirectional transition cascade from the perspective of stability
Qi-Ming Pei(裴启明), Bin-Qian Zhou(周彬倩), Yi-Fan Zhou(周祎凡), Charles Omotomide Apata, and Long Jiang(蒋龙). Chin. Phys. B, 2021, 30(11): 118704.
[8] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[9] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[10] Dynamical analysis for hybrid virus infection system in switching environment
Dong-Xi Li(李东喜), Ni Zhang(张妮). Chin. Phys. B, 2020, 29(9): 090201.
[11] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[12] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[13] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[14] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
[15] Noise decomposition algorithm and propagation mechanism in feed-forward gene transcriptional regulatory loop
Rong Gui(桂容), Zhi-Hong Li(李治泓), Li-Jun Hu(胡丽君), Guang-Hui Cheng(程光晖), Quan Liu(刘泉), Juan Xiong(熊娟), Ya Jia(贾亚), Ming Yi(易鸣). Chin. Phys. B, 2018, 27(2): 028706.
No Suggested Reading articles found!