ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Electromagnetically induced transparency in a three-mode optomechanical system |
Yan Xiao-Bo (严晓波)a b, Gu Kai-Hui (谷开慧)a, Fu Chang-Bao (付长宝)a, Cui Cui-Li (崔淬砺)a, Wu Jin-Hui (吴金辉)a |
a College of Physics, Jilin University, Changchun 130012, China;
b College of Electronic Science, Northeast Petroleum University, Daqing 163318, China |
|
|
Abstract We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced transparency (EIT) can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between left-hand and right-hand input (probe and coupling) fields. In particular, one perfect EIT window is seen to occur when the two probe fields are exactly out of phase and the EIT window's width is very sensitive to the relative intensity of two coupling fields. Our numerical findings may be extended to achieve optomechanical storage and switching schemes applicable in quantum information processing.
|
Received: 23 January 2014
Revised: 16 April 2014
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61378094). |
Corresponding Authors:
Cui Cui-Li, Wu Jin-Hui
E-mail: cuicuili@jlu.edu.cn;jhwu@jlu.edu.cn
|
Cite this article:
Yan Xiao-Bo (严晓波), Gu Kai-Hui (谷开慧), Fu Chang-Bao (付长宝), Cui Cui-Li (崔淬砺), Wu Jin-Hui (吴金辉) Electromagnetically induced transparency in a three-mode optomechanical system 2014 Chin. Phys. B 23 114201
|
[1] |
Kippenberg T J and Vahala K J 2008 Science 321 1172
|
[2] |
Marquardt F and Girvin S M 2009 Physics 2 40
|
[3] |
Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602
|
[4] |
Mahajan S, Kumar T, Bhattacherjee A B and ManMohan 2013 Phys. Rev. A 87 013621
|
[5] |
Gigan S, Böhm H, Paternostro M, Blaser F, Langer G, Hertzberg J, Schwab K, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67
|
[6] |
Kleckner D and Bouwmeester D 2006 Nature 444 75
|
[7] |
Agarwal G S and Huang S M 2010 Phys. Rev. A 81 041803
|
[8] |
Kippenberg T J and Vahala K J 2007 Opt. Express 15 17172
|
[9] |
Armani D K, Kippenberg T J, Spillane S M and Vahala K J 2003 Nature 421 925
|
[10] |
Schliesser A, Riviére R, Anetsberger G, Arcizet O and Kippenberg T J 2008 Nat. Phys. 4 415
|
[11] |
Schmid S I, Xia K Y and Evers J 2011 Phys. Rev. A 84 013808
|
[12] |
Singh S, Jing H, Wright E M and Meystre P 2012 Phys. Rev. A 86 021801
|
[13] |
Rogers B, Paternostro M, Palma G M and Chiara G D 2012 Phys. Rev. A 86 042323
|
[14] |
Dalafi A, Naderi M H, Soltanolkotabi M and Barzanjeh S 2013 Phys. Rev. A 87 013417
|
[15] |
Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
|
[16] |
Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Giuseppe G D and Vitali D 2013 Phys. Rev. A 88 013804
|
[17] |
Kómár P, Bennett S D, Stannigel K, Habraken S J M, Rabl P, Zoller P and Lukin M D 2013 Phys. Rev. A 87 013839
|
[18] |
Bhattacharya M and Meystre P 2007 Phys. Rev. Lett. 99 073601
|
[19] |
Mari A and Eisert J 2012 Phys. Rev. Lett. 108 120602
|
[20] |
Li Y, Wu L A and Wang Z D 2011 Phys. Rev. A 83 043804
|
[21] |
Deng Z J, Li Y, Gao M and Wu C W 2012 Phys. Rev. A 85 025804
|
[22] |
Huang S M and Agarwal G S 2009 Phys. Rev. A 80 033807
|
[23] |
Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
|
[24] |
Safavi-Naeini A H, Mayer A T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
|
[25] |
Liu Y X, Davanco M, Aksyuk V and Srinivasan K 2013 Phys. Rev. Lett. 110 223603
|
[26] |
Kronwald A and Marquardt F 2013 Phys. Rev. Lett. 111 133601
|
[27] |
Shu J 2011 Chin. Phys. Lett. 28 104203
|
[28] |
Chen H J and Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese)
|
[29] |
Yan X B, Cui C L, Gu K H, Tian X D, Fu C B and Wu J H 2014 Opt. Express 22 4886
|
[30] |
Yan X B, Fu C B, Gu K H, Wang R and Wu J H 2013 Opt. Commun. 308 265
|
[31] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[32] |
Chang D E, Safavi-Naeini A H, Hafezi M and Painter O 2011 New J. Phys. 13 023003
|
[33] |
Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H 2011 Phys. Rev. Lett. 107 133601
|
[34] |
Fiore V, Dong C H, Kuzyk M C and Wang H L 2013 arXiv:1302.0557
|
[35] |
Gröblacher S, Hammerer K, Vanner M and Aspelmeyer M 2009 Nature 460 724
|
[36] |
Kenan Q and Agarwal G S 2013 Phys. Rev. A 87 063813
|
[37] |
Wu J H, Artoni M, and La Rocca G C 2010 Phys. Rev. A 82 013807
|
[38] |
Heinze G, Hubrich C and Halfmann T 2013 Phys. Rev. Lett. 111 033601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|