Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117705    DOI: 10.1088/1674-1056/23/11/117705
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Preparation of multi-walled carbon nanotube-Fe composites and their application as light weight and broadband electromagnetic wave absorbers

Liu Yuan (刘渊), Liu Xiang-Xuan (刘祥萱), Wang Xuan-Jun (王煊军)
No. 603 Faculty, Xi'an Research Institute of High Technology, Xi'an 710025, China
Abstract  

Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposition by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses demonstrated that Fe nanoparticles were deposited on the surface of the MWCNTs. The electromagnetic properties of the MWCNTs were significantly changed, and the absorbing capacity evidently improved after the Fe deposition on the MWCNT surface. A minimum reflection loss of -29.4 dB was observed at 8.39 GHz, and the less than -10 dB bandwidth was about 10.6 GHz, which covered the whole X band (8.2-12.4 GHz) and the whole Ku band (12.4-18 GHz), indicating that the MWCNT-Fe composites could be used as an effective microwave absorption material.

Keywords:  multi-walled carbon nanotube      nano composites      electrical properties      microwave absorber  
Received:  05 June 2014      Revised:  11 August 2014      Accepted manuscript online: 
PACS:  77.84.Lf (Composite materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  62.20.mm (Fracture)  
  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
Corresponding Authors:  Liu Xiang-Xuan     E-mail:  xiangxuanstudy@sina.cn

Cite this article: 

Liu Yuan (刘渊), Liu Xiang-Xuan (刘祥萱), Wang Xuan-Jun (王煊军) Preparation of multi-walled carbon nanotube-Fe composites and their application as light weight and broadband electromagnetic wave absorbers 2014 Chin. Phys. B 23 117705

[1] Wang W J, Zang C G and Jiao Q J 2013 Chin. Phys. B 22 128101
[2] Liu Y, Liu X X, Wand X J and Wen W 2014 Chin. Phys. Lett. 31 047702
[3] Wei C Y, Shen X Q and Song F Z 2012 Chin. Phys. B. 21 028101
[4] Liu Y, Liu X X and Wang X J 2014 J. Alloy. Compd. 584 249
[5] Liu Y, Liu X X and Wang X J 2014 Adv. Appl. Ceram.
[6] Zhang T, Huang D Q, Yang Y, Kang F Y and Gu J L 2013 Mat. Sci. Eng. B 178 1
[7] Rajesh K S, Narayanan T N, Reena Mary A P, Anantharaman M R, Anchal S, Robert V and Pulickel M A 2011 Appl. Phys. Lett. 99 113116
[8] Wen F S, Zhang F and Liu Z Y 2011 J. Phys. Chem. C 115 14025
[9] Lee D H, Seo S D, Lee G H, Hong H S and Kim D W 2014 J. Alloy. Compd. 606 204
[10] Tong G X, Liu F T, Wu W H, Du F F and Guan J G 2014 J. Mater. Chem. A 2 7373
[11] Yu L M, Li B, Sheng L M, An K and Zhao X L 2013 J. Alloy. Compd. 575 123
[12] Min S K, Ying D L, Bong J P, Chun-Yeol Y and Hyoung J C 2012 J. Ind. Eng. Chem. 18 664
[13] Ni X M, Zheng Z, Xiao K, Huang L and He L 2010 Mater. Chem. Phys. 120 206
[14] Cheng Y L, Dai J M, Wu D J and Sun Y P 2010 J. Magn. Magn. Mater. 322 97
[15] Manasevit H M 1968 Appl. Phys. Lett. 12 156
[16] Li Z M, Li J P, Jiang H Y, Han Y B, Yin J Q, Xia Y J, Chang Y M, Zhang J C and Hao Y. 2013 J. Cryst. Growth. 368 29
[17] Lacrevaz T, Flechet B, Farcy A, Torres J, Gros-Jean M, Bermond C, Vo T T, Cueto O, Blampey B, Angenieux G, Piquet J and Decrecyc F 2006 Microelectron. Eng. 83 2184
[18] Dong X L, Zhang X F, Huang H and Zuo F 2008 Appl. Phys. Lett. 92 013127
[19] Zhang S Y and Cao Q X 2012 Mat. Sci. Eng. B 177 678
[20] Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lv B, Lei J P and Lee C G 2006 Appl. Phys. Lett. 89 053115.
[21] Yang Y, Xu C L, Xia Y X, Wang T and Li F S 2010 J. Alloy. Compd. 493 549
[22] Lu B, Huang H, Dong X L, Zhang X F, Lei J P, Sun J P and Dong C 2008 J. Appl. Phys. 104 114313
[23] Naito Y and Suetake K 1971 IEEE Trans. Microw. Theory Techn. 19 65
[24] Meshram M R, Agrawal N K, Sinha B and Misra P S 2004 J. Magn. Magn. Mater. 271 207
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[5] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[6] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[7] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[8] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[9] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[10] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[11] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[12] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[13] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[14] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[15] Degradation behavior of electrical properties of GaInAs (1.0 eV) and GaInAs (0.7 eV) sub-cells of IMM4J solar cells under 1-MeV electron irradiation
Yan-Qing Zhang(张延清), Ming-Xue Huo(霍明学), Yi-Yong Wu(吴宜勇), Cheng-Yue Sun(孙承月), Hui-Jie Zhao(赵慧杰), Hong-Bin Geng(耿洪滨), Shuai Wang(王帅), Ru-Bin Liu(刘如彬), Qiang Sun(孙强). Chin. Phys. B, 2017, 26(8): 088801.
No Suggested Reading articles found!