Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110302    DOI: 10.1088/1674-1056/23/11/110302
GENERAL Prev   Next  

Localization and recurrence of a quantum walk in a periodic potential on a line

Chou Chung-I (鄒忠毅)a, Ho Choon-Lin (何俊麟)b
a Department of Physics, Chinese Culture University, Taipei 111, Taiwan, China;
b Department of Physics, Tamkang University, Tamsui 251, Taiwan, China
Abstract  We present a numerical study of a model of quantum walk in a periodic potential on a line. We take the simple view that different potentials have different affects on the way in which the coin state of the walker is changed. For simplicity and definiteness, we assume that the walker's coin state is unaffected at sites without the potential, and rotated in an unbiased way according to the Hadamard matrix at sites with the potential. This is the simplest and most natural model of a quantum walk in a periodic potential with two coins. Six generic cases of such quantum walks are studied numerically. It is found that, of the six cases, four cases display significant localization effect where the walker is confined in the neighborhood of the origin for a sufficiently long time. Associated with such a localization effect is the recurrence of the probability of the walker returning to the neighborhood of the origin.
Keywords:  quantum walk      periodic potential      localization      recurrence  
Received:  25 April 2014      Revised:  02 July 2014      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
  05.40.Fb (Random walks and Levy flights)  
Fund: Project supported by the Ministry of Science and Technology of Taiwan, China (Grant Nos. NSC-99-2112-M-032-002-MY3 and NSC 102-2112-M-032-003-MY3) and the National Center for Theoretical Sciences (North) (NCTS-n) of China.
Corresponding Authors:  Ho Choon-Lin     E-mail:  hcl@mail.tku.edu.tw

Cite this article: 

Chou Chung-I (鄒忠毅), Ho Choon-Lin (何俊麟) Localization and recurrence of a quantum walk in a periodic potential on a line 2014 Chin. Phys. B 23 110302

[1] Kempe J 2003 Contemporary Physics 44 307
[2] Venegas-Andraca S E 2012 Q. Info. Proc. 11 1015
[3] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[4] Nayak A and Vishwanath A 2000 quant-ph/0010117
[5] Li M, Zhang Y S and Guo G C 2013 Chin. Phys. B 22 030310
[6] Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
[7] Qin H and Xue P 2014 Chin. Phys. B 23 010301
[8] Aharonov D, Ambainis A, Kempe J and Vazirani U 2001 Proceedings of the 33th ACM Symposium on the Theory of Computing (STOC '01) ACM 50
[9] Wu J J, Zhang B D, Tang Y H, Qiang X G and Wang H Q 2013 Chin. Phys. B 22 050304
[10] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
[11] Ren C N, Shi P, Liu K, Li W D, Zhao J and Gu Y J 2013 Acta Phys. Sin. 62 090301 (in Chinese)
[12] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[13] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 Proceedings of the 35th ACM Symposium on Theory of Computing (STOC '03) ACM 59
[14] Konno N 2002 Q. Info. Proc. 1 345
[15] Konno N 2002 Q. Info. and Comp. 2 578
[16] Konno N 2005 J. Math. Soc. Japan 57 1179
[17] Ribeiro P, Milman P and Mosseri R 2004 Phys. Rev. Lett. 93 190503
[18] Inui N and Konno N 2005 Physica A 353 133
[19] Shikano Y and Katsura H 2010 Phys. Rev. E 82 031122
[20] Shikano Y and Katsura H 2011 AIP Conf. Proc. 1363 151
[21] Linden N and Sharam J 2009 Phys. Rev. A 80 052327
[22] Konno N 2010 Q. Info. Proc. 9 405
[23] Machida T 2013 J. Comput. Theor. Nanosci. 10 1571
[24] Wójcik A, Luczak T, Kurzyński P, Grudka A, Gdala T and Bednarska-Bzdega M 2012 Phys. Rev. A 85 012329
[25] Shikano Y 2011 AIP Conf. Proc. 1327 487
[26] Shikano Y 2013 J. Comput. Theor. Nanosci. 10 1558
[27] Li M, Zhang Y S and Guo G C 2013 Chin. Phys. Lett. 30 020304
[28] Hillery M, Bergou J and Feldman E 2003 Phys. Rev. A 68 032314
[29] Feldman E and Hillery M 2004 Phys. Lett. A 324 277
[30] Venancio B F, Andrade F M and da Luz M G E 2013 J. Phys. A 46 165302
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[3] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[4] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[5] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[8] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[9] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[10] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[11] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[12] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[13] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[14] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[15] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
No Suggested Reading articles found!