ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Cavity-induced ATS effect on a superconducting Xmon qubit |
Xueyi Guo(郭学仪)1,2, Hui Deng(邓辉)1, Jianghao Ding(丁江浩)3, Hekang Li(李贺康)1,2, Pengtao Song(宋鹏涛)1,2, Zhan Wang(王战)1,2, Luhong Su(苏鹭红)1,2, Yanjun Liu(刘彦军)1, Zhongcheng Xiang(相忠诚)1, Jie Li(李洁)1, Yirong Jin(金贻荣)1, Yuxi Liu(刘玉玺)3,4, Dongning Zheng(郑东宁)1,2 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
4 Tsinghua National Laboratory for Information Science and Technology(TNList), Beijing 100084, China |
|
|
Abstract We couple a ladder-type three-level superconducting artificial atom to a cavity. Adjusting the artificial atom to make the cavity be resonant with the two upper levels, we then probe the lower two levels of the artificial atom. When driving the cavity to a coherent state, the probe spectrum shows energy level splitting induced by the quantized electromagnetic field in the cavity. This splitting size is related to the coupling strength between the cavity and the artificial atom and, thus, is fixed after the sample is fabricated. This is in contrast to the classical Autler-Townes splitting of a three-level system in which the splitting is proportional to the driving amplitude, which can be continuously changed. Our experiment results show the difference between the classical microwave driving field and the quantum field of the cavity.
|
Received: 25 April 2018
Revised: 18 May 2018
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
85.25.Cp
|
(Josephson devices)
|
|
Fund: Project supported by the Science Funds from the Ministry of Science and Technology of China (Grant Nos. 2014CB921401, 2017YFA0304300, 2014CB921202, and 2016YFA0300601), the National Natural Science Foundation of China (Grant No. 11674376), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300). |
Corresponding Authors:
Dongning Zheng
E-mail: dzheng@iphy.ac.cn
|
Cite this article:
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁) Cavity-induced ATS effect on a superconducting Xmon qubit 2018 Chin. Phys. B 27 084202
|
[1] |
Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64 1107
|
[2] |
Harris S E, Field J E and Kasapi A 1992 Phys. Rev. A 46 R29
|
[3] |
Rice P R and Brecha R J 1996 Opt. Commun. 126 230
|
[4] |
Gong Z R, Ian H, Zhou L and Sun C P 2008 Phys. Rev. A 78 053806
|
[5] |
Nikoghosyan G and Fleischhauer M 2010 Phys. Rev. Lett. 105 013601
|
[6] |
Giner L, Veissier L, Sparkes B, Sheremet A S, Nicolas A, Mishina O S, Scherman M, Burks S, Shomroni I, Kupriyanov D V, Lam P K, Giacobino E and Laurat J 2013 Phys. Rev. A 87 013823
|
[7] |
Pei L, Lu X, Bai J, Miao X, Wang R, Wu L A, Ren S, Jiao Z, Zhu H, Fu P and Zuo Z 2013 Phys. Rev. A 87 063822
|
[8] |
Peng B,Özdemir Š K, Chen W, Nori F and Yang L 2014 Nat. Commun. 5 5082
|
[9] |
Lu X, Miao X, Bai J, Pei L, Wang M, Gao Y, Wu L A, Fu P, Wang R and Zuo Z 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055003
|
[10] |
Autler S H and Townes C H 1955 Phys. Rev. 100 703
|
[11] |
Anisimov P M, Dowling J P and Sanders B C 2011 Phys. Rev. Lett. 107 163604
|
[12] |
Sun H C, Liu Y X, Ian H, You J Q, Il'ichev E and Nori F 2014 Phys. Rev. A 89 063822
|
[13] |
Hoi I C, Wilson C M, Johansson G, Palomaki T, Peropadre B and Delsing P 2011 Phys. Rev. Lett. 107 073601
|
[14] |
Ian H, Liu Y X and Nori F 2010 Phys. Rev. A 81 063823
|
[15] |
Novikov S, Sweeney T, Robinson J E, Premaratne S P, Suri B, Wellstood F C and Palmer B S 2014 Nat. Phys. 12 75
|
[16] |
Li H C, Ge G Q and Zhang H Y 2015 Opt. Express 23 9844-9851
|
[17] |
Gu X, Huai S N, Nori F and Liu Y X 2016 Phys. Rev. A 93 063827
|
[18] |
Liu Q C, Li T F, Luo X Q, Zhao H, Xiong W, Zhang Y S, Chen Z, Liu J S, Chen W, Nori F, Tsai J S and You J Q 2016 Phys. Rev. A 93 053838
|
[19] |
Long J, Ku H S, Wu X, Gu X, Lake R E, Bal M, Liu Y X and Pappas D P 2018 Phys. Rev. Lett. 120 083602
|
[20] |
Sillanpaa M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W, Paraoanu G S and Hakonen P J 2009 Phys. Rev. Lett. 103 193601
|
[21] |
Baur M, Filipp S, Bianchetti R, Fink J M, Goppl M, Steffen L, Leek P J, Blais A and Wallraff A 2009 Phys. Rev. Lett. 102 243602
|
[22] |
Abdumalikov A A Jr, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601
|
[23] |
Suri B, Keane Z K, Ruskov R, Bishop L S, Tahan C, Novikov S, Robinson J E, Wellstood F C and Palmer B S 2013 New J. Phys. 15 125007
|
[24] |
Novikov S, Robinson J E, Keane Z K, Suri B, Wellstood F C and Palmer B S 2013 Phys. Rev. B 88 060503
|
[25] |
Tanji-Suzuki H, Chen W, Landig R, Simon J and Vuletic V 2011 Science 333 1266
|
[26] |
Ding J H, Huai S N, Ian H and Liu Y X 2017 arXiv: 1707 02707 [quant-ph]
|
[27] |
Peng Z H, Ding J H, Zhou Y, Ying L L, Wang Z, Zhou L, Kuang L M, Liu Y X, Astafiev O and Tsai J S 2017 arXiv: 1705 11118 [cond-mat physics:quant-ph]
|
[28] |
Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
|
[29] |
Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502
|
[30] |
Kelly J S 2015 “Fault-tolerant superconducting qubits”, Ph. D. Dissertation (Santa Barbara: University of California)
|
[31] |
Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|