Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084202    DOI: 10.1088/1674-1056/27/8/084202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Cavity-induced ATS effect on a superconducting Xmon qubit

Xueyi Guo(郭学仪)1,2, Hui Deng(邓辉)1, Jianghao Ding(丁江浩)3, Hekang Li(李贺康)1,2, Pengtao Song(宋鹏涛)1,2, Zhan Wang(王战)1,2, Luhong Su(苏鹭红)1,2, Yanjun Liu(刘彦军)1, Zhongcheng Xiang(相忠诚)1, Jie Li(李洁)1, Yirong Jin(金贻荣)1, Yuxi Liu(刘玉玺)3,4, Dongning Zheng(郑东宁)1,2
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
4 Tsinghua National Laboratory for Information Science and Technology(TNList), Beijing 100084, China
Abstract  

We couple a ladder-type three-level superconducting artificial atom to a cavity. Adjusting the artificial atom to make the cavity be resonant with the two upper levels, we then probe the lower two levels of the artificial atom. When driving the cavity to a coherent state, the probe spectrum shows energy level splitting induced by the quantized electromagnetic field in the cavity. This splitting size is related to the coupling strength between the cavity and the artificial atom and, thus, is fixed after the sample is fabricated. This is in contrast to the classical Autler-Townes splitting of a three-level system in which the splitting is proportional to the driving amplitude, which can be continuously changed. Our experiment results show the difference between the classical microwave driving field and the quantum field of the cavity.

Keywords:  superconducting qubit      circuit QED      Autler-Townes splitting  
Received:  25 April 2018      Revised:  18 May 2018      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  85.25.Cp (Josephson devices)  
Fund: 

Project supported by the Science Funds from the Ministry of Science and Technology of China (Grant Nos. 2014CB921401, 2017YFA0304300, 2014CB921202, and 2016YFA0300601), the National Natural Science Foundation of China (Grant No. 11674376), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

Corresponding Authors:  Dongning Zheng     E-mail:  dzheng@iphy.ac.cn

Cite this article: 

Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁) Cavity-induced ATS effect on a superconducting Xmon qubit 2018 Chin. Phys. B 27 084202

[1] Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64 1107
[2] Harris S E, Field J E and Kasapi A 1992 Phys. Rev. A 46 R29
[3] Rice P R and Brecha R J 1996 Opt. Commun. 126 230
[4] Gong Z R, Ian H, Zhou L and Sun C P 2008 Phys. Rev. A 78 053806
[5] Nikoghosyan G and Fleischhauer M 2010 Phys. Rev. Lett. 105 013601
[6] Giner L, Veissier L, Sparkes B, Sheremet A S, Nicolas A, Mishina O S, Scherman M, Burks S, Shomroni I, Kupriyanov D V, Lam P K, Giacobino E and Laurat J 2013 Phys. Rev. A 87 013823
[7] Pei L, Lu X, Bai J, Miao X, Wang R, Wu L A, Ren S, Jiao Z, Zhu H, Fu P and Zuo Z 2013 Phys. Rev. A 87 063822
[8] Peng B,Özdemir Š K, Chen W, Nori F and Yang L 2014 Nat. Commun. 5 5082
[9] Lu X, Miao X, Bai J, Pei L, Wang M, Gao Y, Wu L A, Fu P, Wang R and Zuo Z 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055003
[10] Autler S H and Townes C H 1955 Phys. Rev. 100 703
[11] Anisimov P M, Dowling J P and Sanders B C 2011 Phys. Rev. Lett. 107 163604
[12] Sun H C, Liu Y X, Ian H, You J Q, Il'ichev E and Nori F 2014 Phys. Rev. A 89 063822
[13] Hoi I C, Wilson C M, Johansson G, Palomaki T, Peropadre B and Delsing P 2011 Phys. Rev. Lett. 107 073601
[14] Ian H, Liu Y X and Nori F 2010 Phys. Rev. A 81 063823
[15] Novikov S, Sweeney T, Robinson J E, Premaratne S P, Suri B, Wellstood F C and Palmer B S 2014 Nat. Phys. 12 75
[16] Li H C, Ge G Q and Zhang H Y 2015 Opt. Express 23 9844-9851
[17] Gu X, Huai S N, Nori F and Liu Y X 2016 Phys. Rev. A 93 063827
[18] Liu Q C, Li T F, Luo X Q, Zhao H, Xiong W, Zhang Y S, Chen Z, Liu J S, Chen W, Nori F, Tsai J S and You J Q 2016 Phys. Rev. A 93 053838
[19] Long J, Ku H S, Wu X, Gu X, Lake R E, Bal M, Liu Y X and Pappas D P 2018 Phys. Rev. Lett. 120 083602
[20] Sillanpaa M A, Li J, Cicak K, Altomare F, Park J I, Simmonds R W, Paraoanu G S and Hakonen P J 2009 Phys. Rev. Lett. 103 193601
[21] Baur M, Filipp S, Bianchetti R, Fink J M, Goppl M, Steffen L, Leek P J, Blais A and Wallraff A 2009 Phys. Rev. Lett. 102 243602
[22] Abdumalikov A A Jr, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601
[23] Suri B, Keane Z K, Ruskov R, Bishop L S, Tahan C, Novikov S, Robinson J E, Wellstood F C and Palmer B S 2013 New J. Phys. 15 125007
[24] Novikov S, Robinson J E, Keane Z K, Suri B, Wellstood F C and Palmer B S 2013 Phys. Rev. B 88 060503
[25] Tanji-Suzuki H, Chen W, Landig R, Simon J and Vuletic V 2011 Science 333 1266
[26] Ding J H, Huai S N, Ian H and Liu Y X 2017 arXiv: 1707 02707 [quant-ph]
[27] Peng Z H, Ding J H, Zhou Y, Ying L L, Wang Z, Zhou L, Kuang L M, Liu Y X, Astafiev O and Tsai J S 2017 arXiv: 1705 11118 [cond-mat physics:quant-ph]
[28] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[29] Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502
[30] Kelly J S 2015 “Fault-tolerant superconducting qubits”, Ph. D. Dissertation (Santa Barbara: University of California)
[31] Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[5] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[6] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[7] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[8] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[9] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[10] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[11] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[12] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[13] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[14] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[15] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
No Suggested Reading articles found!