CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Energy transfer relation of a novel Ce3+/Pr3+/Eu3+ co-doped Sr2.975-xLaxAlO4+xF1-x solid solution phosphor |
Wang Yan-Ze (王延泽), Ma Jian (马健), Sun Liang (孙亮), Li Rui (李蕊), Wang Da-Jian (王达健) |
Institute of Materials Physics, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China |
|
|
Abstract The photoluminescence properties and energy transfer of a new Ce3+/Pr3+/Eu3+ co-doped solid-solution composition of Sr2.975-xLaxAlO4+xF1-x (LSAF) phosphor are investigated. Upon doping Pr3+ into lattices of LSAF:Ce host, a shoulder emission peak is observed at about 620 nm, owing to the transition of 1D2→3H4. Addition of Eu3+ to LSAF:Ce3+, Pr3+ phosphor results in a sharp emission peaked at 675 nm for the 5D0→7F3 transition and an increase of the intensity of red emission for Pr3+ with increasing Eu3+ concentration. The pathways of energy transfer among Ce3+, Pr3+, and Eu3+ are proposed to be responsible for color addition of a red component to the primary yellow emission, enabling a potential adjustable color for blue excitable warm white.
|
Received: 07 March 2014
Revised: 22 April 2014
Accepted manuscript online:
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21076161 and 50872091). |
Corresponding Authors:
Wang Da-Jian
E-mail: djwang@tjut.edu.cn
|
About author: 78.55.-m |
Cite this article:
Wang Yan-Ze (王延泽), Ma Jian (马健), Sun Liang (孙亮), Li Rui (李蕊), Wang Da-Jian (王达健) Energy transfer relation of a novel Ce3+/Pr3+/Eu3+ co-doped Sr2.975-xLaxAlO4+xF1-x solid solution phosphor 2014 Chin. Phys. B 23 107805
|
|
| [7] | Im W B, Fourr Ú Y, Brinkley S, Sonoda J, Nakamura S, DenBaars S P and Seshadri R 2009 Opt. Express 17 22673
|
|
| [1] | Lawrence C J, Dawe R K, Christie K R, Cleveland D W, Dawson S C, Endow S A, Goldstein L S, Goodson H V, Hirokawa N, Howard J, Malmberg R L, McIntosh J R, Miki H, Mitchison T J, Okada Y, Reddy A S, Saxton W M, Schliwa M, Scholey J M, Vale R D, Walczak C E and Wordeman L 2004 J. Cell Biol. 167 19
|
|
| [8] | Im W B, Fellows N N, DenBaars S P and Seshadri R 2009 J. Mater. Chem. 19 1325
|
|
| [2] | Vale R D and Milligan R A 2000 Science 288 88
|
|
| [9] | Im W B, George N, Kurzman J, Brinkley S, Mikhailovsky A, Hu J, Chmelka B F, DenBaars S P and Seshadri R 2011 Adv. Mater. 23 2300
|
|
| [3] | Vale R D 2003 Cell 112 467
|
|
| [10] | Vogt T, Woodward P M, Hunter B A, Prodjosantoso A K and Kennedy B J 1999 J. Solid State Chem. 144 228
|
|
| [4] | Svoboda K, Schmidt C F, Schnapp B J and Block S M 1993 Nature 365 721
|
|
| [5] | Hirokawa N, Noda Y, Tanaka Y and Niwa S 2009 Nat. Rev. Mol. Cell Biol. 10 682
|
|
| [11] | Im W B, Fellows N N, DenBaars S P, Seshadri R and Kim Y I 2009 Chem. Mater. 21 2957
|
|
| [6] | Yildiz A, Tomishige M, Vale R D and Selvin P R 2004 Science 303 676
|
|
| [12] | Dorenbos P 2000 J. Lumin. 91 155
|
|
| [7] | Kaseda K, Higuchi H and Hirose K 2003 Nat. Cell Biol. 5 1079
|
|
| [13] | Dorenbos P 2001 Phys. Rev. B 64 125117
|
|
| [8] | Asbury C L, Fehr A N and Block S M 2003 Science 302 2130
|
|
| [14] | Dorenbos P 2002 J. Lumin. 99 283
|
|
| [9] | Asenjo A B, Krohn N and Sosa H 2003 Nat. Struct. Mol. Biol. 10 836
|
|
| [15] | Dorenbos P 2003 J. Lumin. 105 117
|
|
| [16] | Li P L, Yang Z P, Wang Z J and Guo L Q 2008 Chin. Phys. B 17 1907
|
|
| [17] | Duan M L, Kuang X Y, Zhang C X and Chai R P 2011 Chin. Phys. B 20 013102
|
|
| [18] | Jiang Z Q, Wang Y H and Guo Y 2010 Chin. Phys. B 19 027801
|
|
| [10] | Sindelar C V and Downing K H 2007 J. Cell Biol. 177 377
|
|
| [19] | Özen G, Forte O and Di Bartolo B 2005 J. Appl. Phys. 97 013510
|
|
| [11] | Sindelar C V and Downing K H 2010 Proc. Natl. Acad. Sci. USA 107 4111
|
|
| [20] | Özen G, Forte O and Di Bartolo B 2005 Opt. Mater. 27 1664
|
|
| [12] | Rice S, Lin A W, Safer D, Hart C L, Naber N, Carragher B O, Cain S M, Pechatnikova E, Wilson-Kubalek E M, Whittaker M, Pate E, Cooke R, Taylor E W, Milligan R A and Vale R D 1999 Nature 402 778
|
|
| [21] | Malinowski M, Szczepanski P, Wolinski W, Wolski R and Frukacz Z 1993 J. Phys.: Condens. Matter 5 6469
|
|
| [13] | Case R B, Rice S, Hart C L, Ly B and Vale R D 2000 Curr. Biol. 10 157
|
|
| [22] | Li G G, Peng C, Zhang C M, Xu Z H, Shang M M, Yang D M, Kang X J, Wang W X, Li C X and Cheng Z Y 2010 Inorg. Chem. 49 10522
|
|
| [14] | Sindelar C V, Budny M J, Rice S, Naber N, Fletterick R and Cooke R 2002 Nat. Struct. Mol. Biol. 9 844
|
|
| [23] | Shang M M, Li G G, Kang X J, Yang D M, Geng D L and Lin J 2011 ACS Appl. Mater. & Interfaces 3 2738
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|