Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017801    DOI: 10.1088/1674-1056/abaede
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation

Benli Ding(丁本利)1, Xiong Zhou(周雄)1, Jianli Zhang(章践立)1, Haiping Xia(夏海平)1,†, Hongwei Song(宋宏伟)2, and Baojiu Chen(陈宝玖)3
1 Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo 315211, China; 2 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering and College of Physics, Jilin University, Changchun 130012, China; 3 Department of Physics, Dalian Maritime University, Dalian 116026, China
Abstract  Na5Y9F32 single crystals doped with ∼ 0.8-mol% Ho3 + , ∼ 1-mol% Tm3 + , and various Er3 + ion concentrations were prepared by a modified Bridgman method. The effects of Er3 + ion concentration on 2.0-μ m emission excited by an 800-nm laser diode were investigated with the help of their spectroscopic properties. The intensity of 2.0-μ m emission reached to maximum when the Er3 + ion concentration was ∼ 1 mol%. The energy transfer mechanisms between Er3 + , Ho3 + , and Tm3 + ions were identified from the change of the absorption spectra, the emission spectra, and the measured decay curves. The maximum 2.0-μ m emission cross section of the Er3 + /Ho3 + /Tm3 + tri-doped Na5Y9F32 single crystal reached 5.26 × 10 -21 cm2. The gain cross section spectra were calculated according to the absorption and emission cross section spectra. The cross section for ∼ 2.0-μ m emission became a positive gain once the inversion level of population was reached 30%. The energy transfer efficiency was further increased by 11.81% through the incorporation of Er3 + ion into Ho3 + /Tm3 + system estimated from the measured lifetimes of Ho3 + /Tm3 + -and Er3 + /Ho3 + /Tm3 + -doped Na5Y9F32 single crystals. The present results illustrated that the Er3 + /Ho3 + /Tm3 + tri-doped Na5Y9F32 single crystals can be used as promising candidate for 2.0-μ m laser.
Keywords:  2.0-μ m emission      Er3 + /Ho3 + /Tm3 +       energy transfer      Na5Y9F32 single crystal  
Received:  25 June 2020      Revised:  08 August 2020      Accepted manuscript online:  13 August 2020
PACS:  78.60.Lc (Optically stimulated luminescence)  
  78.55.Hx (Other solid inorganic materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51772159), the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ17E020001), the Natural Science Foundation of Ningbo City (Grant No. 202003N4099), and K C Wong Magna Fund in Ningbo University.
Corresponding Authors:  Corresponding author. E-mail: hpxcm@nbu.edu.cn   

Cite this article: 

Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章践立), Haiping Xia(夏海平), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖) The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation 2021 Chin. Phys. B 30 017801

1 Yang S, Xia H P, Jiang Y Z, Jiang D S, Wang C, Feng Z G, Zhang J, Gu X M, Zhang J L, Jiang H C and Chen B J 2015 Chin. Phys. B 24 067802
2 Yao B Q, Zheng L L, Yang X T, Wang T H, Duan X M, Zhao G J and Dong Q 2009 Chin. Phys. B 18 1009
3 Gao S F, Xu S and Tu C Y 2018 Opt. laser Technol. 111 775
4 Zhang Y Z, Xu B, Zhang Y S, Liu Y Y, Xu H Y, Cai Z P and Tu C Y 2019 J. Lumin. 211 96
5 Xiong R, Shi J, Tang W F and Tian D C 2001 Chin. Phys. B 10 52
6 Simondi-Teisseire B, Viana B, Lejus A M and Vivien D 1997 J. Lumin. 72-74 971
7 Hu J X, Zhao Y, Chen B J, Xia H P, Zhang Y P and Ye H Q 2019 J. Lumin. 205 500
8 Qiao Y, Zhou X, Zhang J L, Xia H P, Song H W and Chen B J 2020 J. Rare Earths
9 Li X Y, Peng Y Z, Wei X T, Yuan S, Zhu Y W and Chen D Q 2019 J. Lumin. 210 182
10 Zhang J P, Zhang W J, Jian Y, Qi Q and Zhang Q Y 2013 J. Am. Ceram. Soc. 96 3836
11 Jackson S D, Bugge F and Erbert G 2007 Opt. Lett. 32 2496
12 Jackson S D 2009 Laser & Photon. Rev. 3 466
13 Lu Y, Cai M Z, Cao R J, Tian Y, Huang F F, Xu S Q and Zhang J J 2016 Mater. Res. Bull. 84 124
14 Maroni P, Palatella L, Toncelli A and Tonelli M 2001 J. Cryst. Growth 229 497
15 Zhang P X, Chen Z Q, Hang Y, Li Z, Yin H, Zhu S Q and Fu S H 2017 Infrared Phys. Technol. 82 178
16 Yang L L, Tang J F, Huang J H, Gong X H, Chen Y J, Lin Y F, Luo Z D and Huang Y D 2013 Opt. Mater. 35 2188
17 Ding B L, Zhou X, Zhang J L, Xia H P, Song H W and Chen B J 2020 J. Lumin. 223 117254
18 Li C, Zhang Y, Zhang X J, Zeng F M, Mauro T and Liu J H 2011 J. Rare Earth. 29 592
19 Tian Y, Xu R R, Hu L L and Zhang J J 2011 Opt. Lett. 36 3218
20 Peng B O and Izumitani T 1995 Opt. Mater. 4 797
21 Mccumber D E 1964 Phys. Rev. 136 A954
22 Chen R, Tian Y, Li B P, Wang F C, Jing X F, Zhang J J and Xu S Q 2015 Opt. Mater. 49 116
23 Florez A, Oliveira S L, Flòrez M, Gòmez L A and Nunes L A O 2006 J. Alloys Compd. 418 238
24 Cai M Z, Zhou B, Wang F C, Tian, Zhou J J, Xu S Q and Zhang J J 2015 Opt. Mater. Express 5 1431
25 Zou X L and Toratani H S 1996 J. Non-Crystal Solids 195 113
26 Wang M, Yi L X, Wang G N, Hu L L and Zhang J J 2009 Solid State Commun. 149 1216
27 Qiao Y, Zhou X, Zhang J L, Xia H P, Song H W and Chen B J 2020 J. Alloys Compd. 824 153987
28 Feng X, Tanabe S and Hanada T 2001 J. Appl. Phys. 89 3560
29 Zhu Z J, Li J F, You Z Y, Wang Y, Lv S Z, Ma En, Xu J L, Wang H Y and Tu C Y 2012 Opt. Lett. 37 4838
[1] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[2] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥). Chin. Phys. B, 2021, 30(12): 127802.
[5] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[6] Substitution priority of Eu2+ in multi-cation compound Sr0.8Ca0.2Al2Si2O8 and energy transfer
Zhi-Ping Yang(杨志平), Zhen-Ling Li(李振玲), Zhi-Jun Wang(王志军), Pan-Lai Li(李盼来), Miao-Miao Tian(田苗苗), Jin-Ge Cheng(程金阁), Chao Wang(王超). Chin. Phys. B, 2018, 27(1): 017802.
[7] Vibration-assisted coherent excitation energy transfer in a detuned dimer
Xin Wang(王信), Hao Chen(陈浩), Chen-yu Li(李晨宇), Hong-rong Li(李宏荣). Chin. Phys. B, 2017, 26(3): 037105.
[8] Phonon-assisted excitation energy transfer in photosynthetic systems
Hao Chen(陈浩), Xin Wang(王信), Ai-Ping Fang(方爱平), Hong-Rong Li(李宏荣). Chin. Phys. B, 2016, 25(9): 098201.
[9] 2.0-μm emission and energy transfer of Ho3+/Yb3+ co-doped LiYF4 single crystal excited by 980 nm
Yang Shuo (杨硕), Xia Hai-Ping (夏海平), Jiang Yong-Zhang (姜永章), Zhang Jia-Zhong (张加忠), Jiang Dong-Sheng (江东升), Wang Cheng (王成), Feng Zhi-Gang (冯治刚), Zhang Jian (张健), Gu Xue-Mei (谷雪梅), Zhang Jian-Li (章践立), Jiang Hao-Chuan (江浩川), Chen Bao-Jiu (陈宝玖). Chin. Phys. B, 2015, 24(6): 067802.
[10] Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors
Wu Shuang-Hong (吴双红), Li Wen-Lian (李文连), Chen Zhi (陈志), Li Shi-Bin (李世彬), Wang Xiao-Hui (王晓晖), Wei Xiong-Bang (魏雄邦). Chin. Phys. B, 2015, 24(2): 028505.
[11] Concentration effect of the near-infrared quantum cutting of 1788-nm luminescence of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor
Chen Xiao-Bo (陈晓波), Li Song (李崧), Ding Xian-Lin (丁贤林), Yang Xiao-Dong (杨小冬), Liu Quan-Lin (刘泉林), Gao Yan (高燕), Sun Ping (孙萍), Yang Guo-Jian (杨国建). Chin. Phys. B, 2014, 23(8): 087809.
[12] Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors
Cui Hang (崔航), Zhu Pei-Fen (朱培芬), Zhu Hong-Yang (祝洪洋), Li Hong-Dong (李红东), Cui Qi-Liang (崔啟良). Chin. Phys. B, 2014, 23(5): 057801.
[13] Spectroscopic properties and mechanism of Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals
Hu Yue-Bo (胡曰博), Qiu Jian-Bei (邱建备), Zhou Da-Cheng (周大成), Song Zhi-Guo (宋志国), Yang Zheng-Wen (杨正文), Wang Rong-Fei (王荣飞), Jiao Qing (焦清), Zhou Da-Li (周大利). Chin. Phys. B, 2014, 23(2): 024205.
[14] A novel strong green phosphor:K3Gd(PO4)2:Ce3+, Tb3+ for a UV-excited white light-emitting-diode
Jiang Ting-Ming (姜庭明), Yu Xue (余雪), Xu Xu-Hui (徐旭辉), Zhou Da-Cheng (周大成), Yu Hong-Ling (余红玲), Yang Peng-Hui (杨鹏辉), Qiu Jian-Bei (邱建备). Chin. Phys. B, 2014, 23(2): 028505.
[15] Photoluminescence characteristics and energy transfer between Bi3+ and Eu3+ in Na2O–CaO–GeO2–SiO2 glass
Li Qian-Yue (黎千跃), Xu Xu-Hui (徐旭辉), Zhang Bu-Hao (张步豪), Wu Yu-Mei (吴玉梅), Qiu Jian-Bei (邱建备), Yu Xue (余雪). Chin. Phys. B, 2014, 23(12): 127803.
No Suggested Reading articles found!