CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structures and optical properties of ⅢA-doped wurtzite Mg0.25Zn0.75O |
Zheng Shu-Wen (郑树文), He Miao (何苗), Li Shu-Ti (李述体), Zhang Yong (章勇) |
Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The energy band structures, density of states, and optical properties of ⅢA-doped wurtzite Mg0.25Zn0.75O (ⅢA=Al, Ga, In) are investigated by a first-principles method based on the density functional theory. The calculated results show that the optical bandgaps of Mg0.25Zn0.75O:ⅢA are larger than those of Mg0.25Zn0.75O because of the Burstein-Moss effect and the bandgap renormalization effect. The electron effective mass values of Mg0.25Zn0.75O:ⅢA are heavier than those of Mg0.25Zn0.75O, which is in agreement with the previous experimental result. The formation energies of MgZnO:Al and MgZnO:Ga are smaller than that of MgZnO:In, while their optical bandgaps are larger, so MgZnO:Al and MgZnO:Ga are suitable to be fabricated and used as transparent conductive oxide films in the ultra-violet (UV) and deep UV optoelectronic devices.
|
Received: 10 March 2014
Revised: 08 May 2014
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61078046), the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong Province, China (Grant No. 2012A080304016), and the Youth Foundation of South China Normal University, China (Grant No. 2012KJ018). |
Corresponding Authors:
Zheng Shu-Wen
E-mail: LED@scnu.edu.cn
|
Cite this article:
Zheng Shu-Wen (郑树文), He Miao (何苗), Li Shu-Ti (李述体), Zhang Yong (章勇) Electronic structures and optical properties of ⅢA-doped wurtzite Mg0.25Zn0.75O 2014 Chin. Phys. B 23 087101
|
[1] |
Yang Z H, Zheng J H, Zhai H J, Yang L L, Liu L and Gao M 2009 Cryst. Res. Technol. 44 619
|
[2] |
Wang F, Chen X L, Geng X H, Zhang D K, Wei C C, Huang Q, Zhang X D and Zhao Y 2012 Appl. Surf. Sci. 258 9005
|
[3] |
Matsubara K, Tampo H, Shibata H, Yamada A, Fons P, Iwata K and Niki S 2004 Appl. Phys. Lett. 85 1374
|
[4] |
Robbins J J and Wolden C A 2003 Appl. Phys. Lett. 83 3933
|
[5] |
Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
|
[6] |
Yang C, Li X M, Gao X D, Cao X, Yang R and Li Y Z 2011 Solid State Commun. 151 264
|
[7] |
Tian C S, Chen X L, Liu J M, Zhang D K, Wei C C, Zhao Y and Zhang X D 2014 Acta Phys. Sin. 63 036801 (in Chinese)
|
[8] |
Liu W S, Chen W K and Hsueh K P 2013 J. Alloys Compd. 552 255
|
[9] |
Cohen D J, Ruthe K C and Barnett S A 2004 J. Appl. Phys. 96 459
|
[10] |
Segall M D, Lindan P, Probet M J, Pickard C J, Hasnip P J, Clark S J, and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
|
[11] |
Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[12] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[13] |
Zunger A, Wei S H, Ferreira L G and Bemard J E 1990 Phys. Rev. Lett. 65 353
|
[14] |
Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
|
[15] |
Wang Z J, Li S C, Wang L T and Liu Z 2009 Chin. Phys. B 18 2992
|
[16] |
Yang K S, Dai Y and Huang B B 2008 Chem. Phys. Lett. 456 71
|
[17] |
Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
|
[18] |
Saniz R, Xu Y, Matsubara M, Amini M N, Dixit H, Lamoen and Partoens B 2013 J. Phys. Chem Solids 74 45
|
[19] |
Dean J A 1992 Lange's Handbook of Chemistry, 14th edn. (New York: McGraw-Hill, Inc.)
|
[20] |
Yoo Y Z, Jin Z W, Chikyow T, Fukumura T, Kawasaki M and Koinuma H 2002 Appl. Phys. Lett. 81 3798
|
[21] |
Huang D, Shao Y Z, Chen D H, Guo J and Li G X 2008 Acta Phys. Sin. 57 1078 (in Chinese)
|
[22] |
Hou Q Y, Li J J, Ying Y C, Zhao C W, Zhao E J and Zhang Y 2013 Chin. Phys. B 22 077103
|
[23] |
Lu J G, Fujita S and Ye Z Z 2007 J. Appl. Phys. 101 083705
|
[24] |
Roth A P, Webb J B and Williams D F 1981 Solid State Commun. 39 1269
|
[25] |
Sarkar A, Ghosh S, Chaudhuri S and Pal A K 1991 Thin Solid Films 204 255
|
[26] |
Reynolds D C, Look D C and Jogai B 2000 J. Appl. Phys. 88 5760
|
[27] |
Walsh A, Juarez L F, Silva S D and Wei S H 2008 Phys. Rev. B 78 075211
|
[28] |
Lucarini V, Saarinen J J, Peiponen K E and Vartiainen E M 2005 Kramers-Kronig Relations in Optical Materials Research, Springer Series in Optical Sciences, Vol. 110 (Berline/Heidelberg: Springer Science+Business Media) pp. 27-35, ISBN: 978-3-540-23673-3 (print), 978-3-540-27316-5 (online)
|
[29] |
Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi 15 627
|
[30] |
Sernelius B E, Berggren K F, Jin Z C, Hamberg I and Granqvist C G 1988 Phys. Rev. B 37 10244
|
[31] |
Burstein E 1954 Phys. Rev. 93 632
|
[32] |
Moss T S 1954 Proc. Phys. Soc. London Sect. B 67 775
|
[33] |
Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y and Ohshima T 2006 Appl. Phys. Lett. 89 262107
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|