|
|
Entanglement concentration for W-type entangled coherent states |
Sheng Yu-Bo (盛宇波)a c, Liu Jiong (刘炯)a c, Zhao Sheng-Yang (赵圣阳)a c, Wang Lei (王磊)a c, Zhou Lan (周澜)a b |
a Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China; b College of Mathematics and Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; c Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract An entangled coherent state (ECS) is one type of entanglement, which is widely discussed in the application of quantum information processing (QIP). In this paper, we propose an entanglement concentration protocol (ECP) to distill the maximally entangled W-type ECS from the partially entangled W-type ECS. In the ECP, we adopt the balanced beam splitter (BS) to make the parity check measurement. Our ECP is quite different from the conventional ECPs. After performing the ECP, not only can we obtain the maximally entangled ECS with some success probability, but also we can increase the amplitude of the coherent state. Therefore, it is especially useful in long-distance quantum communication, if the photon loss is considered.
|
Received: 22 December 2013
Revised: 26 January 2014
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347110, 11104159, and 61201164), the Qing Lan Project, Jiangsu Province, 1311 Talent Plan, Nanjing University of Posts and Telecommunications, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. |
Corresponding Authors:
Zhou Lan
E-mail: zhoul@njupt.edu.cn
|
Cite this article:
Sheng Yu-Bo (盛宇波), Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Wang Lei (王磊), Zhou Lan (周澜) Entanglement concentration for W-type entangled coherent states 2014 Chin. Phys. B 23 080305
|
[1] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[4] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[5] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[6] |
Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
|
[7] |
Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
|
[8] |
Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
|
[9] |
Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
|
[10] |
Gu B, Xu F, Ding L G and Zhang Y A 2012 Int. J. Theor. Phys. 51 3559
|
[11] |
Gu B, Huang Y G, Fang X and Cheng Y L 2011 Commun. Thero. Phys. 56 659
|
[12] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[13] |
Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
|
[14] |
Nielsen M A 2004 Phys. Rev. Lett. 93 040503
|
[15] |
Feng G, Xu G and Long G 2013 Phys. Rev. Lett. 110 190501
|
[16] |
Ren B C, Wei H R and Deng F G 2013 Laser Phys. Lett. 10 095202
|
[17] |
Wei H R and Deng and F G 2013 Phys. Rev. A 87 022305
|
[18] |
Sanders B C 2012 J. Phys. A: Math. Theor. 45 244002
|
[19] |
Sanders B C 1992 Phys. Rev. A 45 6811
|
[20] |
Van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
|
[21] |
Wang X G 2001 Phys. Rev. A 64 022302
|
[22] |
An N B 2003 Phys. Rev. A 68 022321
|
[23] |
Prakash H, Chandra N, Prakash R and Shivani 2007 Phys. Rev. A 75 044305
|
[24] |
Jeong H and Kim M S 2002 Quantum Inf. Comput. 2 208
|
[25] |
Jeong H and Kim M S 2002 Phys. Rev. A 65 042305
|
[26] |
Rlaph T C, Gilchrist A, Milburn G J, Munro W J and Glancy S 2003 Phys. Rev. A 68 042319
|
[27] |
Cochrane P T, Milburn G J and Munro W J 1999 Phys. Rev. A 59 2631
|
[28] |
Glancy S, Vasconcelos H M and Ralph T C 2004 Phys. Rev. A 70 022317
|
[29] |
Sangouard N, Simon C, Gisin N, Laurat J, Brouri R T and Grangier P 2010 J. Opt. Soc. Am. B 27 137
|
[30] |
An N B 2004 Phys. Rev. A 69 022315
|
[31] |
An N B 2010 Opt. Commun. 283 4113
|
[32] |
Tipsmark A, Dong R, Laghaout A, Marek P, Jezke M and Andersen U L 2011 Phys. Rev. A 84 050301
|
[33] |
Prakash H and Mishra M K 2012 J. Opt. Soc. Am. B 29 2915
|
[34] |
Jeong H and An N B 2006 Phys. Rev. A 74 022104
|
[35] |
Zheng S B 2002 Phys. Rev. A 66 014103
|
[36] |
Cabello A 2002 Phys. Rev. A 65 032108
|
[37] |
Cabello A 2002 Phys. Rev. A 66 042114
|
[38] |
Bennett C H, Bernstein H J, Popesue S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[39] |
Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
|
[40] |
Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
|
[41] |
Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
|
[42] |
Choudhury B S and Dhara A 2013 Quantum Inf. Process. 12 2577
|
[43] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
|
[44] |
Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
|
[45] |
Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
|
[46] |
Sheng Y B, Deng F G and Zhou H Y 2010 Quantum Inf. Comput. 10 272
|
[47] |
Gu B 2012 J. Opt. Soc. Am. B 29 1685
|
[48] |
Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
|
[49] |
Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
|
[50] |
Deng F G 2012 Phys. Rev. A 85 022311
|
[51] |
Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
|
[52] |
Wang H F, Zhang S and Yeon K H 2010 J. Opt. Soc. Am. B 27 2159
|
[53] |
Wang H F, Sun L L, Zhang S and Yeon K H 2012 Quantum Inf. Process. 11 431
|
[54] |
Si B, Su S L, Sun L L, Cheng L Y, Wang H F and Zhang S 2013 Chin. Phys. B 22 030305
|
[55] |
Xu T T, Xiong W and Ye L 2012 Mod. Phys. Lett. B 26 1250214
|
[56] |
Sheng Y B and Zhou L 2013 Entropy 15 1776
|
[57] |
Wang C 2012 Phys. Rev. A 86 012323
|
[58] |
Cao C, Wang C and Zhang R 2012 Chin. Phys. B 21 110305
|
[59] |
Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
|
[60] |
Cao C, Wang C, He L Y and Zhang R 2013 Opt. Express 21 4093
|
[61] |
Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
|
[62] |
Li X H, Chen X and Zeng Z 2013 J. Opt. Soc. Am. B 30 2774
|
[63] |
Zhao J, Li W D and Gu Y J 2013 Eurphys. Phys. Lett. 104 10005
|
[64] |
Gu B, Huang Y, Fang X and Wang H 2013 Int. J. Theor. Phys. 53 1337
|
[65] |
Gu B, Quan D H and Xiao S R 2012 Int. J. Theor. Phys. 51 2966
|
[66] |
Lin Q, He B, Bergou J A and Ren Y H 2009 Phys. Rev. A 80 042311
|
[67] |
He B, Ren Y H and Bergou J A 2009 Phys. Rev. A 79 052323
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|