Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 080305    DOI: 10.1088/1674-1056/23/8/080305
GENERAL Prev   Next  

Entanglement concentration for W-type entangled coherent states

Sheng Yu-Bo (盛宇波)a c, Liu Jiong (刘炯)a c, Zhao Sheng-Yang (赵圣阳)a c, Wang Lei (王磊)a c, Zhou Lan (周澜)a b
a Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China;
b College of Mathematics and Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
c Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  An entangled coherent state (ECS) is one type of entanglement, which is widely discussed in the application of quantum information processing (QIP). In this paper, we propose an entanglement concentration protocol (ECP) to distill the maximally entangled W-type ECS from the partially entangled W-type ECS. In the ECP, we adopt the balanced beam splitter (BS) to make the parity check measurement. Our ECP is quite different from the conventional ECPs. After performing the ECP, not only can we obtain the maximally entangled ECS with some success probability, but also we can increase the amplitude of the coherent state. Therefore, it is especially useful in long-distance quantum communication, if the photon loss is considered.
Keywords:  quantum communication and computation      entanglement concentration      coherent state  
Received:  22 December 2013      Revised:  26 January 2014      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347110, 11104159, and 61201164), the Qing Lan Project, Jiangsu Province, 1311 Talent Plan, Nanjing University of Posts and Telecommunications, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:  Zhou Lan     E-mail:  zhoul@njupt.edu.cn

Cite this article: 

Sheng Yu-Bo (盛宇波), Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Wang Lei (王磊), Zhou Lan (周澜) Entanglement concentration for W-type entangled coherent states 2014 Chin. Phys. B 23 080305

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[4] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[5] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[6] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
[7] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[8] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[9] Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
[10] Gu B, Xu F, Ding L G and Zhang Y A 2012 Int. J. Theor. Phys. 51 3559
[11] Gu B, Huang Y G, Fang X and Cheng Y L 2011 Commun. Thero. Phys. 56 659
[12] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[13] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[14] Nielsen M A 2004 Phys. Rev. Lett. 93 040503
[15] Feng G, Xu G and Long G 2013 Phys. Rev. Lett. 110 190501
[16] Ren B C, Wei H R and Deng F G 2013 Laser Phys. Lett. 10 095202
[17] Wei H R and Deng and F G 2013 Phys. Rev. A 87 022305
[18] Sanders B C 2012 J. Phys. A: Math. Theor. 45 244002
[19] Sanders B C 1992 Phys. Rev. A 45 6811
[20] Van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
[21] Wang X G 2001 Phys. Rev. A 64 022302
[22] An N B 2003 Phys. Rev. A 68 022321
[23] Prakash H, Chandra N, Prakash R and Shivani 2007 Phys. Rev. A 75 044305
[24] Jeong H and Kim M S 2002 Quantum Inf. Comput. 2 208
[25] Jeong H and Kim M S 2002 Phys. Rev. A 65 042305
[26] Rlaph T C, Gilchrist A, Milburn G J, Munro W J and Glancy S 2003 Phys. Rev. A 68 042319
[27] Cochrane P T, Milburn G J and Munro W J 1999 Phys. Rev. A 59 2631
[28] Glancy S, Vasconcelos H M and Ralph T C 2004 Phys. Rev. A 70 022317
[29] Sangouard N, Simon C, Gisin N, Laurat J, Brouri R T and Grangier P 2010 J. Opt. Soc. Am. B 27 137
[30] An N B 2004 Phys. Rev. A 69 022315
[31] An N B 2010 Opt. Commun. 283 4113
[32] Tipsmark A, Dong R, Laghaout A, Marek P, Jezke M and Andersen U L 2011 Phys. Rev. A 84 050301
[33] Prakash H and Mishra M K 2012 J. Opt. Soc. Am. B 29 2915
[34] Jeong H and An N B 2006 Phys. Rev. A 74 022104
[35] Zheng S B 2002 Phys. Rev. A 66 014103
[36] Cabello A 2002 Phys. Rev. A 65 032108
[37] Cabello A 2002 Phys. Rev. A 66 042114
[38] Bennett C H, Bernstein H J, Popesue S and Schumacher B 1996 Phys. Rev. A 53 2046
[39] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[40] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[41] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[42] Choudhury B S and Dhara A 2013 Quantum Inf. Process. 12 2577
[43] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[44] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[45] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[46] Sheng Y B, Deng F G and Zhou H Y 2010 Quantum Inf. Comput. 10 272
[47] Gu B 2012 J. Opt. Soc. Am. B 29 1685
[48] Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
[49] Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
[50] Deng F G 2012 Phys. Rev. A 85 022311
[51] Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
[52] Wang H F, Zhang S and Yeon K H 2010 J. Opt. Soc. Am. B 27 2159
[53] Wang H F, Sun L L, Zhang S and Yeon K H 2012 Quantum Inf. Process. 11 431
[54] Si B, Su S L, Sun L L, Cheng L Y, Wang H F and Zhang S 2013 Chin. Phys. B 22 030305
[55] Xu T T, Xiong W and Ye L 2012 Mod. Phys. Lett. B 26 1250214
[56] Sheng Y B and Zhou L 2013 Entropy 15 1776
[57] Wang C 2012 Phys. Rev. A 86 012323
[58] Cao C, Wang C and Zhang R 2012 Chin. Phys. B 21 110305
[59] Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
[60] Cao C, Wang C, He L Y and Zhang R 2013 Opt. Express 21 4093
[61] Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
[62] Li X H, Chen X and Zeng Z 2013 J. Opt. Soc. Am. B 30 2774
[63] Zhao J, Li W D and Gu Y J 2013 Eurphys. Phys. Lett. 104 10005
[64] Gu B, Huang Y, Fang X and Wang H 2013 Int. J. Theor. Phys. 53 1337
[65] Gu B, Quan D H and Xiao S R 2012 Int. J. Theor. Phys. 51 2966
[66] Lin Q, He B, Bergou J A and Ren Y H 2009 Phys. Rev. A 80 042311
[67] He B, Ren Y H and Bergou J A 2009 Phys. Rev. A 79 052323
[1] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[2] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[3] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[4] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[5] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[6] Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions
Jianming Liu(刘建明), Xiangguo Meng(孟祥国). Chin. Phys. B, 2019, 28(12): 124206.
[7] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[8] Entropy of field interacting with two two-qubit atoms
Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2018, 27(9): 090303.
[9] Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity
Han Cai(蔡涵), Qi-Chun Liu(刘其春), Chang-Hao Zhao(赵昌昊), Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(8): 084207.
[10] Extended Bell inequality and maximum violation
Yan Gu(古燕), Haifeng Zhang(张海峰), Zhigang Song(宋志刚), Jiuqing Liang(梁九卿), Lianfu Wei(韦联福). Chin. Phys. B, 2018, 27(10): 100303.
[11] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[12] Optimal multi-photon entanglement concentration with the photonic Faraday rotation
Lan Zhou(周澜), Dan-Dan Wang(王丹丹), Xing-Fu Wang(王兴福), Shi-Pu Gu(顾世浦), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(2): 020302.
[13] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[14] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[15] Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique
Dušan Popov, Romeo Negrea, Miodrag Popov. Chin. Phys. B, 2016, 25(7): 070301.
No Suggested Reading articles found!