Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070306    DOI: 10.1088/1674-1056/23/7/070306
GENERAL Prev   Next  

Quantum correlations in a two-qubit anisotropic Heisenberg XYZ chain with uniform magnetic field

Li Lei (李磊), Yang Guo-Hui (杨国晖)
School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
Abstract  Quantum correlations in an anisotropic Heisenberg XYZ chain is investigated by use of concurrence C and measurement-induced disturbance (MID). We show that the behaviors of the MID are remarkably different from the concurrence. Firstly, it is shown that there is a revival phenomenon in the concurrence but not in the MID, which is suitable for both the ground state case and the finite temperature case. Based on the analysis of the ground-state C and MID structures, we illustrate the reason why the ground-state MID does not show a revival phenomenon in detail. Then we explore different effects of the external and self parameters on entanglement and MID behaviors. It can be shown that the region of MID is evidently larger than the case of concurrence, and that the concurrence signals a quantum phase transition even at finite T while MID does not. Cases where the concurrence finally maintains one nonzero constant value regardless of the value of the variable B for a constant Jz, while MID decreases monotonously to zero with increasing B. We also show that if B can take a proper range of values, the concurrence decreases with the improvement of the anisotropic parameter γ, whereas an opposite effect for MID behaviors is presented.
Keywords:  entanglement      measurement-induced disturbance      Heisenberg model  
Received:  18 October 2013      Revised:  21 January 2014      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2012021003-3) and the National Natural Science Foundation of China (Grant No. 11247247).
Corresponding Authors:  Yang Guo-Hui     E-mail:  yangguohui_1981_1981@126.com
About author:  03.67.Lx; 03.65.Ud; 75.10.Jm

Cite this article: 

Li Lei (李磊), Yang Guo-Hui (杨国晖) Quantum correlations in a two-qubit anisotropic Heisenberg XYZ chain with uniform magnetic field 2014 Chin. Phys. B 23 070306

[1] Zhan M S and Zhang D Y 1999 Chin. Phys. 8 269
[2] Nielsen M A and Chuang I L 1998 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Nielsen M N (Ph. D. thesis) University of Mexico equantph/0011036
[4] Zheng Y Z, Wu G C, Gu Y J and Guo G C 2003 Chin. Phys. 12 1070
[5] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[6] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Fang M F and Wang C Z 2003 Chin. Phys. 12 287
[9] Xi X Q, Yue R H, Chen W X and Yue R H 2002 Chin. Phys. Lett. 19 1044
[10] Liu X J and Fang M F 2003 Chin. Phys. 12 971
[11] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[12] Luo S L 2008 Phys. Rev. A 77 022301
[13] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[14] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[15] Luo S L 2008 Phys. Rev. A 77 042303
[16] Luo S L and Lina C 2013 Phys. Rev. A 87 062303
[17] Luo S L and Fu S 2010 Phys. Rev. A 82 034302
[18] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[19] Luo S L and Fu S 2011 Phys. Rev. Lett. 106 120401
[20] Wang X 2001 Phys. Rev. A 64 012313
[21] Hu X D, Sousa Rogerio de and Sarma S Das 2001 Phys. Rev. Lett. 86 918
[22] Wang X 2001 Phys. Rev. A 66 034302
[23] Kane B E 1998 Nature 133 393
[24] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[25] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[26] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[27] Zhang G F 2007 Phys. Rev. A 75 034304
[28] Bose S 2003 Phys. Rev. Lett. 91 207901
[29] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[30] Burkard G, Loss D and Divincenzo D P 1999 Phys. Rev. B 59 2070
[31] Zhang T, Xi X Q and Yue R H 2004 Acta Phys. Sin. 53 2755 (in Chinese)
[32] Lidar D A, Bacon D and Whaley K B 1999 Phys. Rev. Lett. 82 4556
[33] Santos L F 2003 Phys. Rev. A 67 062306
[34] Anteneodo C and Souza M C 2003 J. Opt. B: Quantum Semiclassical Opt. 5 73
[35] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[36] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[37] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[11] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!