Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070305    DOI: 10.1088/1674-1056/23/7/070305
GENERAL Prev   Next  

Symmetric quantum discord for a two-qubit state

Wang Zhong-Xiao (王仲宵), Wang Bo-Bo (王波波)
Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China
Abstract  We discuss the symmetric quantum discord (SQD) for an arbitrary two-qubit state consisting of subsystems A and B and give the analysis formula of the symmetric quantum discord for the arbitrary two-qubit state. We also give the optimization process of the symmetric quantum discord for some states and obtain the symmetric quantum discord. We compare the quantum discord (QD) with the symmetric quantum discord, and find that the symmetric quantum discord is greater than the quantum discord. We also find that the symmetric quantum discord can be unequal to the quantum discord when the right quantum discord (measure on subsystem B) is equal to the left quantum discord (measure on subsystem A).
Keywords:  quantum discord      symmetric quantum discord      optimization process  
Received:  23 October 2013      Revised:  12 January 2014      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174028) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2011JBZ013).
Corresponding Authors:  Wang Zhong-Xiao     E-mail:  11121773@bjtu.edu.cn
About author:  03.67.-a; 42.50.Dv

Cite this article: 

Wang Zhong-Xiao (王仲宵), Wang Bo-Bo (王波波) Symmetric quantum discord for a two-qubit state 2014 Chin. Phys. B 23 070305

[1] Aguilar G H, Jimenez Farias O, Maziero J, Serra R M, Souto Ribeiro P H and Walborn S P 2012 Phys. Rev. Lett. 108 063601
[2] Silva I A, Girolami D, Auccaise R, Sarthour R S, Oliveira I S, Bonagamba T J, deAzevedo E R, Soares-Pinto D O and Adesso G 2013 Phys. Rev. Lett. 110 140501
[3] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[4] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[5] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[6] Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
[7] Luo S 2008 Phys. Rev. A 77 042303
[8] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[9] Girolami D and Adesso G 2011 Phys. Rev. A 83 052108
[10] Yang Y and Wang A M 2013 Chin. Phys. Lett. 30 080302
[11] Xu P, Wang D and Ye L 2013 Chin. Phys. B 22 100306
[12] Soares-Pinto D O, Celeri L C, Auccaise R, Fanchini F F, deAzevedo E R, Maziero J, Bonagamba T J and Serra R M 2010 Phys. Rev. A 81 062118
[13] Maziero J, Celeri L C and Serra R M 2011 arXiv:1004.2082v4 [quant-ph]
[14] Braga H C, Rulli C C, Thiago R, Oliveira de and Sarandy M S 2012 Phys. Rev. A 86 062106
[1] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[2] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[3] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[4] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[5] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[6] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[7] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
[8] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[9] Geometric global quantum discord of two-qubit states
Yunlong Xiao(肖运龙), Tao Li(李陶), Shao-Ming Fei(费少明), Naihuan Jing(景乃桓), Zhi-Xi Wang(王志玺), Xianqing Li-Jost(李先清). Chin. Phys. B, 2016, 25(3): 030301.
[10] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[11] Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence
Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊). Chin. Phys. B, 2015, 24(6): 060302.
[12] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
[13] Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江). Chin. Phys. B, 2015, 24(10): 100304.
[14] Dynamics of quantum discord in a two-qubit system under classical noise
Guo You-Neng (郭有能), Fang Mao-Fa (方卯发), Liu Xiang (刘翔), Yang Bai-Yuan (杨百元). Chin. Phys. B, 2014, 23(3): 034204.
[15] Correlation dynamics of a qubit–qutrit system in a spin-chain environment with Dzyaloshinsky–Moriya interaction
Yang Yang (杨阳), Wang An-Min (王安民). Chin. Phys. B, 2014, 23(2): 020307.
No Suggested Reading articles found!