Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047809    DOI: 10.1088/1674-1056/23/4/047809
Special Issue: TOPICAL REVIEW — Plasmonics and metamaterials
TOPICAL REVIEW—Plasmonics and metamaterials Prev   Next  

Metamaterials and plasmonics:From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials

Francesco Monticone, Andrea Alú
Department of Electrical and Computer Engineering, The University of Texas at Austin, 1 University Station C0803, Austin, Texas 78712, USA
Abstract  The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way to innovations at an unprecedented level. To capitalize the disruptive potential of this rising field of science and technology, it is important to be able to combine the richness of optical phenomena enabled by nanoplasmonics in order to realize metamaterial components, devices, and systems of increasing complexity. Here, we review a few recent research directions in the field of plasmonic metamaterials, which may foster further advancements in this research area. We will discuss the anomalous scattering features enabled by plasmonic nanoparticles and nanoclusters, and show how they may represent the fundamental building blocks of complex nanophotonic architectures. Building on these concepts, advanced components can be designed and operated, such as optical nanoantennas and nanoantenna arrays, which, in turn, may be at the basis of metasurface devices and complex systems. Following this path, from basic phenomena to advanced functionalities, the field of plasmonic metamaterials offers the promise of an important scientific and technological impact, with applications spanning from medical diagnostics to clean energy and information processing.
Keywords:  plasmonics      metamaterials      nanoparticles      scattering  
Received:  08 January 2014      Revised:  29 January 2014      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  42.25.Fx (Diffraction and scattering)  
Fund: Project supported by the ONR MURI (Grant No. N00014-10-1-0942).
Corresponding Authors:  Andrea Alú     E-mail:  alu@mail.utexas.edu
About author:  78.67.Pt; 73.20.Mf; 78.67.Bf; 42.25.Fx

Cite this article: 

Francesco Monticone, Andrea Alú Metamaterials and plasmonics:From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials 2014 Chin. Phys. B 23 047809

[1] Engheta N and Ziolkowski R 2006 Electromagnetic Metamaterials: Physics and Engineering Explorations (Hoboken, NJ: Wiley-IEEE Press)
[2] Engheta N 2002 International Conference on Mathematical Methods in Electromagnetic Theory 1 175
[3] Sihvola A 2007 Metamaterials 1 2
[4] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[5] Veselago V G 1968 Sov. Phys. Uspekhi 10 509
[6] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[7] Born M and Wolf E 2002 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press)
[8] Alù A and Engheta N 2005 Phys. Rev. E 72 16623
[9] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[10] Rainwater D, Kerkhoff A, Melin K, Soric J C, Moreno G and Alù A 2012 New J. Phys. 14 013054
[11] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[12] Alù A 2009 Phys. Rev. B 80 245115
[13] Tretyakov S, Alitalo P, Luukkonen O and Simovski C 2009 Phys. Rev. Lett. 103 103905
[14] Leonhardt U and Philbin T G 2006 New J. Phys. 8 247
[15] Narimanov E E and Kildishev A V. 2009 Appl. Phys. Lett. 95 041106
[16] Smolyaninov I I 2011 Phys. Rev. Lett. 107 253903
[17] Smolyaninov I I and Smolyaninova V N 2013 Is there a metamaterial route to high temperature superconductivity? arXiv: 1311.3277v2 [physics.optics]
[18] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light, 2nd edn. (NJ: Princeton University Press)
[19] Sihvola A 1999 Electromagnetic Mixing Formulas and Applications (London: IEEE Press)
[20] Tretyakov S 2002 Analytical Modeling in Applied Electromagnetics (Norwood: Artech House)
[21] Alù A 2011 Phys. Rev. B 84 075153
[22] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[23] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[24] Alù A and Engheta N 2005 J. Appl. Phys. 97 094310
[25] West J L and Halas N J 2003 Ann. Rev. Biomed. Eng. 5 285
[26] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
[27] Aubry A, Lei D Y, Fernández-Domínguez A I, Sonnefraud Y, Maier S A and Pendry J B 2010 Nano Lett. 10 2574
[28] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[29] Willets K A and Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[30] Argyropoulos C, Chen P Y, Monticone F, D'Aguanno G and Alú A 2012 Phys. Rev. Lett. 108 263905
[31] Alú A and Engheta N 2009 Phys. Rev. Lett. 102 233901
[32] Alú A and Engheta N 2010 Phys. Rev. Lett. 105 263906
[33] Kallos E, Argyropoulos C, Hao Y and Alú A 2011 Phys. Rev. B 84 045102
[34] Monticone F and Alú A 2013 Phys. Rev. X 3 041005
[35] Selvanayagam M and Eleftheriades G V 2013 Phys. Rev. X 3 041011
[36] Chen P Y, Argyropoulos C and Alù A 2013 Phys. Rev. Lett. 111 233001
[37] Alù A and Engheta N 2010 J. Nanophotonics 4 041590
[38] Sipe J and Kranendonk J 1974 Phys. Rev. A 9 1806
[39] Alù A and Engheta N 2008 New J. Phys. 10 115036
[40] Monticone F, Argyropoulos C and Alù A 2013 Phys. Rev. Lett. 110 113901
[41] Foster R M 1924 Bell Syst. Tech. J. 3 259
[42] Argyropoulos C, Monticone F, D'Aguanno G and Alù A 2013 Appl. Phys. Lett. 103 143113
[43] Monticone F, Argyropoulos C and Alù A 2012 Sci. Rep. 2 912
[44] Mackowski D W 1994 J. Opt. Soc. Am. A 11 2851
[45] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[46] Nordlander P, Oubre C, Prodan E, Li K and Stockman M I 2004 Nano Lett. 4 899
[47] Alù A and Engheta N 2008 Phys. Rev. B 78 085112
[48] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[49] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[50] Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and Halas N J 2010 Nano Lett. 10 3184
[51] Wu C, Khanikaev A B, Adato R, Arju N, Yanik A A, Altug H and Shvets G 2012 Nat. Mater. 11 69
[52] Alù A, Salandrino A and Engheta N 2006 Opt. Express 14 1557
[53] Landau L D, Pitaevskii L P and Lifshitz E M 1984 Electrodynamics of Continuous Media (Oxford: Butterworth-Heinemann)
[54] Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G and Capasso F 2010 Science 328 1135
[55] Shafiei F, Monticone F, Le K Q, Liu X X, Hartsfield T, Alù A and Li X 2013 Nat. Nanotechnol. 8 95
[56] Engheta N 2007 Science 317 1698
[57] Brongersma M L and Shalaev V M 2010 Science 328 440
[58] Engheta N, Salandrino A and Alù A 2005 Phys. Rev. Lett. 95 095504
[59] Alu A and Engheta N 2011 Proc. IEEE 99 1669
[60] Pozar D M 2011 Microwave Engineering, 3rd edn. (New York: Wiley)
[61] Sun Y, Edwards B, Alù A and Engheta N 2012 Nat. Mater. 11 208
[62] Shi J, Elias S, Monticone F, Wu Y, Ratchford D, Li X and Alú A 2014 Modular Assembly of Optical Nanocircuits under review, 2014
[63] Liu N, Wen F, Zhao Y, Wang Y, Nordlander P, Halas N J and Alù A 2013 Nano Lett. 13 142
[64] Alù A and Engheta N 2008 Nat. Photonics 2 307
[65] Brongersma M L 2008 Nat. Photonics 2 270
[66] Monticone F, Estakhri N M and Alù A 2013 Phys. Rev. Lett. 110 203903
[67] Walther C, Scalari G, Amanti M I, Beck M and Faist J 2010 Science 327 1495
[68] Alù A and Engheta N 2009 Phys. Rev. Lett. 103 143902
[69] Agio M and Alú A 2013 Optical Antennas (New York: Cambridge University Press)
[70] Palomba S, Danckwerts M and Novotny L 2009 J. Opt. A: Pure Appl. Opt. 11 114030
[71] Chen P Y and Alù A 2010 Phys. Rev. B 82 235405
[72] Chen P Y, Argyropoulos C and Alù A 2012 Nanophotonics 1 221
[73] Greffet J J 2005 Science 308 1561
[74] Mühlschlegel P, Eisler H J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607
[75] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[76] Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S and Brongersma M L 2010 Nano Lett. 10 439
[77] Zhu H, Yi F and Cubukcu E 2012 IEEE Photonics Technol. Lett. 24 1194
[78] Alù A and Engheta N 2010 Phys. Rev. Lett. 104 213902
[79] Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402
[80] Oliner A A 1984 IEEE Trans. Microw. Theory Tech. 32 1022
[81] Balanis C A 2005 Antenna Theory: Analysis and Design (New York: Wiley)
[82] Alù A and Engheta N 2008 Phys. Rev. Lett. 101 043901
[83] Alù A and Engheta N 2008 Phys. Rev. B 78 195111
[84] Schuck P J, Fromm D P, Sundaramurthy A, Kino G S and Moerner W E 2005 Phys. Rev. Lett. 94 017402
[85] Li J, Salandrino A and Engheta N 2007 Phys. Rev. B 76 245403
[86] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and van Hulst N F 2010 Science 329 930
[87] Novotny L 2007 Phys. Rev. Lett. 98 266802
[88] Kildishev A V, Boltasseva A and Shalaev V M 2013 Science 339 1232009
[89] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[90] Ni X, Emani N K, Kildishev A V, Boltasseva A and Shalaev V M 2012 Science 335 427
[91] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z and Capasso F 2012 Nano Lett. 12 4932
[92] Ni X, Kildishev A V and Shalaev V M 2013 Nat. Commun. 4 2807
[93] Alù A 2013 Physics 6 53
[94] Pors A, Albrektsen O, Radko I P and Bozhevolnyi S I 2013 Sci. Rep. 3 2155
[95] Sun S, He Q, Xiao S, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[96] Pfeiffer C and Grbic A 2013 Phys. Rev. Lett. 110 197401
[97] Selvanayagam M and Eleftheriades G V. 2013 Opt. Express 21 14409
[98] Pozar D M 1996 Electron. Lett. 32 2109
[99] Monticone F and Alù A 2013 OPN--Year in Optics 24 35
[100] Silva A, Monticone F, Castaldi G, Galdi V, Alù A and Engheta N 2014 Science 343 160
[101] Argyropoulos C, Le K Q, Mattiucci N, D'Aguanno G and Alù A 2013 Phys. Rev. B 87 205112
[102] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[103] Zhao Y and Alù A 2013 Nano Lett. 13 1086
[104] Zhao Y, Belkin M A and Alù A 2012 Nat. Commun. 3 870
[105] Hasman E, Kleiner V, Biener G and Niv A 2003 Appl. Phys. Lett. 82 328
[106] Bliokh K Y, Niv A, Kleiner V and Hasman E 2008 Nat. Photonics 2 748
[107] Yin X, Ye Z, Rho J, Wang Y and Zhang X 2013 Science 339 1405
[108] Chanda D, Shigeta K, Gupta S, Cain T, Carlson A, Mihi A, Baca A J, Bogart G R, Braun P and Rogers J A 2011 Nat. Nanotechnol. 6 402
[109] Li P C and Yu E T 2013 J. Appl. Phys. 114 133104
[110] Mousavi S H, Kholmanov I, Alici K B, Purtseladze D, Arju N, Tatar K, Fozdar D Y, Suk J W, Hao Y, Khanikaev A B, Ruoff R S and Shvets G 2013 Nano Lett. 13 1111
[111] Fleischer K, Arca E, Smith C and Shvets I V. 2012 Appl. Phys. Lett. 101 121918
[112] Wowk B 1996 "Phased Array Optics", in Nanotechnology: Molecular Speculations on Global Abundance (Cambridge: MIT Press)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[5] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[6] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[7] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[8] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[9] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[10] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[11] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[12] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[13] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
No Suggested Reading articles found!