Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 103101    DOI: 10.1088/1674-1056/abab6d
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics

Wan-Run Jiang(姜万润)1,†, Rui Wang(王瑞)1,†, Xue-Guang Ren(任雪光)2, Zhi-Yuan Zhang(张志远)1, Dan-Hui Li(李丹慧)1, and Zhi-Gang Wang(王志刚)1,
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
2 School of Science, Xi’an Jiaotong University, Xi’an 710049, China
Abstract  

Dynamic nature of hydrogen bond (H-bond) is central in molecular science of substance transportation, energy transfer, and phase transition in H-bonding networks diversely expressed as solution, crystal, and interfacial systems, thus attracting the state-of-the-art revealing of its phenomenological edges and sophisticated causes. However, the current understanding of the ground-state fluctuation from zero-point vibration (ZPV) lacks a firm quasi-classical base, concerning three basic dimensions as geometry, electronic structure, and interaction energy. Here, based on the ab initio molecular dynamics simulation of a ground-state water dimer, temporally separated fluctuation features in the elementary H-bond as the long-time weakening and the minor short-time strengthening are respectively assigned to two low-frequency intermolecular ZPV modes and two O–H stretching ones. Geometrically, the former modes instantaneously lengthen H-bond up to 0.2 Å whose time-averaged effect coverages to about 0.03 Å over 1-picosecond. Electronic-structure fluctuation crosses criteria’ borders, dividing into partially covalent and noncovalent H-bonding established for equilibrium models, with a 370% amplitude and the district trend in interaction energy fluctuation compared with conventional dragging models using frozen monomers. Extended physical picture within the normal-mode disclosure further approaches to the dynamic nature of H-bond and better supports the upper-building explorations towards ultrafast and mode-specific manipulation.

Keywords:  zero-point vibration      hydrogen bond      normal mode      ab initio molecular dynamics  
Received:  23 March 2020      Revised:  22 July 2020      Accepted manuscript online:  01 August 2020
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
  34.50.Ez (Rotational and vibrational energy transfer)  
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: wangzg@jlu.edu.cn   
About author: 
†Corresponding author. E-mail: wangzg@jlu.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11974136 and 11674123).

Cite this article: 

Wan-Run Jiang(姜万润)†, Rui Wang(王瑞)†, Xue-Guang Ren(任雪光), Zhi-Yuan Zhang(张志远), Dan-Hui Li(李丹慧), and Zhi-Gang Wang(王志刚)‡ Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics 2020 Chin. Phys. B 29 103101

Fig. 1.  

Mode-specific dynamic contribution of zero-point vibration to intermolecular H-bond length. Left panel shows vibration schemes of twelve modes together with their approximate vibration periods reproduced from dynamic simulations (left corners, unit is fs) and calculated fundamental frequencies (italic figures at lower right corners, in unit cm−1). Right panel indicates variance of RO…H when all modes are vibrating with ZPVE and when only one of twelve modes is vibrating with its ZVPE. Curves for single modes are plotted within one corresponding vibration period, and different colour curves correspond to different colours in left figure (top right corner of each mode). The black curve for all modes is plotted within the greatest vibration mode period. Contributions from individual modes are preliminarily classed into three groups, given they might respectively dominate three geometric determinants for RO…H as indicated by the water-dimer model in the right panel. Colour codes as red, green and blue are correspondingly assigned, and coloured horizontal and vertical bars in the right panel indicate approximate temporal range and spatial effects on RO…H of modes in each group. Dash line crossing the vertical bars indicates equilibrium H-bond length.

Fig. 2.  Blending effect of modes in each group on H-bond geometrical determinants and <i>R</i><sub>O…H</sub> variance as well as corresponding cumulative time-averaging effects.

(a) Comparison of RO…O fluctuation induced by modes 2 and 4 with that by all ZPVs, and their geometric projections on RO…H with other two determinants keeping in equilibrium constants. (b) Comparison of ∠O⋯O–H fluctuation induced by modes 5, 6, 7, and 8 with that by all ZPVs, and their geometric projection on RO…H after subtracting the RO…O dynamic influence and keeping RO–H in equilibrium constant. (c) Comparison of RO–H fluctuation induced by modes 9 and 11 with that by all ZPVs, and their geometric projection on RO…H after subtracting both RO…O and ∠O⋯O–H dynamic influences. Sum curve sums up data in sole mode case while collective curve takes data from another coupled simulation where all highlighted modes are simultaneously excited. Grey background curves in panels (a), (b), and (c) are for all-ZPV ΔRO…H respectively induced by variances of all determinants, without only RO…O variances and without RO…O or ∠O⋯O–H variance. (d) Curves coloured in red gradation are extrapolated estimations of the cumulative time-averaged RO…O from modes 2 and 4, when initial vibration phase of two modes is set to be 0, π/2, π, and 3π/2, separately, to form 16 phase combinations. The dotted line and value in brown are for referencing of the experimental results. The grey line and the value in parentheses are from a faster all-ZPV simulation adopting smaller triple-ζ basis sets (TZ) for estimating the convergence behaviour. Curves coloured in blue gradation is for RO–H from modes 9 and 11. Black curves and approximately converged values are for all-ZPV case and RO…H temporal domains sensitive to RO…O and RO–H variances are shaded by corresponding colours.

Fig. 3.  

All-ZPV real-space distributions of LCPs between water molecules and fluctuations of electron density at LCPs (ρC) as well as total energy density at LCPs (HC) with respect to RO…H. For all snapshots, ∇2ρC > 0 is preserved. Crossing of dashed lines denote the equilibrium ρC and HC. Correspondingly divided regions shaded in yellow are for possibly strengthened H-bonds with both shorter RO…H and larger or both shorter RO…H and more negative HC. Grey shaded regions are for possibly weekend ones in the opposite conditions. Inset shows real-space distribution of H-bond LCPs during vibration and qualitatively describes its time evolution. Model of equilibrium water dimer is drawn and the equilibrium bond path connecting H-bonding oxygen and hydrogen atomsis denoted by grey dotted line. The black dot denoting BCPEq is the H-bond BCP in equilibrium conformation. During plotting LCPs, oxygen atom in proton–donor molecule is fixed, while the line connecting the two oxygen atoms and the plane determined with the extra upright hydrogen atom in the proton–donor molecule coincide for all snapshot views. As shown by the colour triangle, all data points are coloured according to contributions to ΔRO…H from dynamic variances of three geometric determinants. There are 315 data points for each distribution pattern.

Fig. 4.  

All-ZPV fluctuations of interaction energy and decomposed components in water dimer with respect to simulation time and RO…H. Left panel shows values of each term and percentages of Ester, Eind, and Edisp in Eint, with respect to simulation time. The horizontal black dashed line in upper part denotes the equilibrium Eint. Term percentages at equilibrium structure (0 fs) and two other exemplified moments with Eint equal to equilibrium value aremarked and their positions are highlighted by vertical dotted lines. Region with slant lines in the left panel is for repulsive effect, and is respectively indicated by positive energy values and negative percentages. Right panel shows term distribution with respect to RO…H. Dashed lines within are for artificial manipulation to change RO…H under frozen monomeric geometries and H-bond angle.

[1]
Meng X, Guo J, Peng J, Chen J, Wang Z, Shi J R, Li X Z, Wang E G, Jiang Y 2015 Nat. Phys. 11 235 DOI: 10.1038/nphys3225
[2]
Cleland W, Kreevoy M 1994 Science 264 1887 DOI: 10.1126/science.8009219
[3]
Sun T, Lin F H, Campbell R L, Allingham J S, Davies P L 2014 Science 343 795 DOI: 10.1126/science.1247407
[4]
Ch’ng L C, Samanta A K, Czakó G, Bowman J M, Reisler H 2012 J. Am. Chem. Soc. 134 15430 DOI: 10.1021/ja305500x
[5]
Zhang J, Chen P, Yuan B, Ji W, Cheng Z, Qiu X 2013 Science 342 611 DOI: 10.1126/science.1242603
[6]
Kumagai T, Kaizu M, Hatta S, Okuyama H, Aruga T, Hamada I, Morikawa Y 2008 Phys. Rev. Lett. 100 166101 DOI: 10.1103/PhysRevLett.100.166101
[7]
Guo J, Lü J T, Feng Y, Chen J, Peng J, Lin Z, Meng X, Wang Z, Li X Z, Wang E G, Jiang Y 2016 Science 352 321 DOI: 10.1126/science.aaf2042
[8]
Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X 2018 Nat. Commun. 9 807 DOI: 10.1038/s41467-018-03203-1
[9]
Li X Z, Walker B, Michaelides A 2011 Proc. Natl. Acad. Sci. USA 108 6369 DOI: 10.1073/pnas.1016653108
[10]
Ceriotti M, Cuny J, Parrinello M, Manolopoulos D E 2013 Proc. Natl. Acad. Sci. USA 110 15591 DOI: 10.1073/pnas.1308560110
[11]
Arunan E, Mani D 2015 Faraday Discuss. 177 51 DOI: 10.1039/C4FD00167B
[12]
Hiroto T 2017 J. Comput. Chem. 38 1503 DOI: 10.1002/jcc.v38.17
[13]
Cruzan J D, Braly L B, Liu K, Brown M G, Loeser J G, Saykally R J 1996 Science 271 59 DOI: 10.1126/science.271.5245.59
[14]
Asensio A, Kobko N, Dannenberg J J 2003 J. Phys. Chem. A 107 6441 DOI: 10.1021/jp0344646
[15]
Louit G, Hocquet A, Ghomi M, Meyer M, Sühnel J 2003 J. Phys. Chem. Commun. 6 1 DOI: 10.1039/b210911e
[16]
Shi Y L, Zhang Z Y, Jiang W R, Wang R, Wang Z G 2019 J. Mol. Liq. 286 110940 DOI: 10.1016/j.molliq.2019.110940
[17]
Fraser G T 1991 Int. Rev. Phys. Chem. 10 189 DOI: 10.1080/01442359109353257
[18]
Scheiner S 1994 Annu. Rev. Phys. Chem. 45 23 DOI: 10.1146/annurev.pc.45.100194.000323
[19]
Mukhopadhyay A, Cole W T S, Saykally R J 2015 Chem. Phys. Lett. 633 13 DOI: 10.1016/j.cplett.2015.04.016
[20]
Mukhopadhyay A, Xantheas S S, Saykally R J 2018 Chem. Phys. Lett. 700 163 DOI: 10.1016/j.cplett.2018.03.057
[21]
Odutola J A, Dyke T R 1980 J. Chem. Phys. 72 5062 DOI: 10.1063/1.439795
[22]
Klopper W, van Duijneveldt-van de Rijdt J G C M, van Duijneveldt F B 2000 Phys. Chem. Chem. Phys. 2 2227 DOI: 10.1039/a910312k
[23]
Lane J R 2013 J. Chem. Theory Comput. 9 316 DOI: 10.1021/ct300832f
[24]
Cowan M L, Bruner B D, Huse N, Dwyer J R, Chugh B, Nibbering E T J, Elsaesser T, Miller R J D 2005 Nature 434 199 DOI: 10.1038/nature03383
[25]
Ramasesha K, De Marco L, Mandal A, Tokmakoff A 2013 Nat. Chem. 5 935 DOI: 10.1038/nchem.1757
[26]
Bader R F W 1994 Atoms in Molecules: A Quantum Theory Oxford Clarendon Press
[27]
Cremer D, Kraka E 1984 Croat. Chem. Acta 57 1259 https://hrcak.srce.hr/file/286247
[28]
Koch U, Popelier P L A 1995 J. Chem. Phys. 99 9747 DOI: 10.1021/j100024a016
[29]
Isaacs E D, Shukla A, Platzman P M, Hamann D R, Barbiellini B, Tulk C A 1999 Phys. Rev. Lett. 82 600 DOI: 10.1103/PhysRevLett.82.600
[30]
Rozas I, Alkorta I, Elguero J 2000 J. Am. Chem. Soc. 122 11154 DOI: 10.1021/ja0017864
[31]
Grabowski S J 2011 Chem. Rev. 111 2597 DOI: 10.1021/cr800346f
[32]
Elgabarty H, Khaliullin R Z, Kühne T D 2015 Nat. Commun. 6 8318 DOI: 10.1038/ncomms9318
[33]
Zhang Z, Li D, Jiang W, Wang Z 2018 Adv. Phys. X 3 1428915 DOI: 10.1080/23746149.2018.1428915
[34]
Zhang Z Y, Jiang W R, Wang B, Yang Y Q, Wang Z G 2018 Chin. Phys. B 27 013102 DOI: 10.1088/1674-1056/27/1/013102
[35]
Jeziorski B, van Hemert M 1976 Mol. Phys. 31 713 DOI: 10.1080/00268977600100551
[36]
Umeyama H, Morokuma K 1977 J. Am. Chem. Soc. 99 1316 DOI: 10.1021/ja00447a007
[37]
Morokuma K 1977 Acc. Chem. Res. 10 294 DOI: 10.1021/ar50116a004
[38]
Rybak S, Jeziorski B, Szalewicz K 1991 J. Chem. Phys. 95 6576 DOI: 10.1063/1.461528
[39]
Mo Y, Gao J, Peyerimhoff S D 2000 J. Chem. Phys. 112 5530 DOI: 10.1063/1.481185
[40]
Khaliullin R Z, Bell A T, Head-Gordon M 2009 Chem. - Eur. J. 15 851 DOI: 10.1002/chem.200802107
[41]
Hoja J, Sax A F, Szalewicz K 2014 Chem. - Eur. J. 20 2292 DOI: 10.1002/chem.201303528
[42]
Wang B, Jiang W, Dai X, Gao Y, Wang Z, Zhang R Q 2016 Sci. Rep. 6 22099 DOI: 10.1038/srep22099
[43]
Tafipolsky M 2016 J. Phys. Chem. A 120 4550 DOI: 10.1021/acs.jpca.6b04861
[44]
Mitsui T, Rose M K, Fomin E, Ogletree D F, Salmeron M 2002 Science 297 1850 DOI: 10.1126/science.1075095
[45]
Ranea V A, Michaelides A, Ramírez R, de Andres P L, Vergés J A, King D A 2004 Phys. Rev. Lett. 92 136104 DOI: 10.1103/PhysRevLett.92.136104
[46]
Xu X, Goddard W A 2004 J. Phys. Chem. A 108 2305 DOI: 10.1021/jp035869t
[47]
Sun J, Remsing R C, Zhang Y, Sun Z, Ruzsinszky A, Peng H, Yang Z, Paul A, Waghmare U, Wu X, Klein M L, Perdew J P 2016 Nat. Chem. 8 831 DOI: 10.1038/nchem.2535
[48]
Møller C, Plesset M S 1934 Phys. Rev. 46 618 DOI: 10.1103/PhysRev.46.618
[49]
Head-Gordon M, Pople J A, Frisch M J 1988 Chem. Phys. Lett. 153 503 DOI: 10.1016/0009-2614(88)85250-3
[50]
Sinha P, Boesch S E, Gu C, Wheeler R A, Wilson A K 2004 J. Phys. Chem. A 108 9213 DOI: 10.1021/jp048233q
[51]
Helgaker T, Uggerud E, Jensen H J A 1990 Chem. Phys. Lett. 173 145 DOI: 10.1016/0009-2614(90)80068-O
[52]
Millam J M, Bakken V, Chen W, Hase W L, Schlegel H B 1999 J. Chem. Phys. 111 3800 DOI: 10.1063/1.480037
[53]
Jeziorski B, Moszynski R, Szalewicz K 1994 Chem. Rev. 94 1887 DOI: 10.1021/cr00031a008
[54]
Stone A J, Misquitta A J 2009 Chem. Phys. Lett. 473 201 DOI: 10.1016/j.cplett.2009.03.073
[55]
Parker T M, Burns L A, Parrish R M, Ryno A G, Sherrill C D 2014 J. Chem. Phys. 140 094106 DOI: 10.1063/1.4867135
[56]
Frisch M J, Trucks G W, Schlegel H B et al. 2009 Gaussian 09, Revision D.01 Gaussian, Inc. Wallingford, CT http://gaussian.com/gaussian16
[57]
Parrish R M, Burns L A, Smith D G A, Simmonett A C, DePrince A E, Hohenstein E G, Bozkaya U, Sokolov A Y, Di Remigio R, Richard R M, Gonthier J F, James A M, McAl-exander H R, Kumar A, Saitow M, Wang X, Pritchard B P, Verma P, Schaefer H F, Patkowski K, King R A, Valeev E F, Evangelista F A, Turney J M, Crawford T D, Sherrill C D 2017 J. Chem. Theory Comput. 13 3185 DOI: 10.1021/acs.jctc.7b00174
[58]
Lu T, Chen F 2012 J. Comput. Chem. 33 580 DOI: 10.1002/jcc.v33.5
[59]
Ceponkus J, Engdahl A, Uvdal P, Nelander B 2013 Chem. Phys. Lett. 581 1 DOI: 10.1016/j.cplett.2013.06.046
[60]
Cole W T S, Fellers R S, Viant M R, Leforestier C, Saykally R J 2015 J. Chem. Phys. 143 154306 DOI: 10.1063/1.4933116
[61]
Czakó G, Kaledin A L, Bowman J M 2010 J. Chem. Phys. 132 164103 DOI: 10.1063/1.3417999
[62]
Mori-Sánchez P, Pendás A M, Luaña V 2001 Phys. Rev. B 63 125103 DOI: 10.1103/PhysRevB.63.125103
[63]
Costales A, Blanco M A, Martín Pendás A, Mori-Sánchez P, Luaña V 2004 J. Phys. Chem. A 108 2794 DOI: 10.1021/jp037627z
[64]
Foroutan-Nejad C, Shahbazian S, Marek R 2014 Chem. - Eur. J. 20 10140 DOI: 10.1002/chem.201402177
[65]
Jenkins S, Morrison I 2000 Chem. Phys. Lett. 317 97 DOI: 10.1016/S0009-2614(99)01306-8
[66]
Grabowski S J, Sokalski W A, Dyguda E, Leszczyńki J 2006 J. Phys. Chem. B 110 6444 DOI: 10.1021/jp0600817
[67]
Grabowski S J 2006 Hydrogen bonding-new insights Dordrecht Springer DOI: 10.1007/978-1-4020-4853-1
[68]
Medvedev M G, Bushmarinov I S, Sun J, Perdew J P, Lyssenko K A 2017 Science 355 49 DOI: 10.1126/science.aah5975
[69]
McDaniel J G, Schmidt J R 2013 J. Phys. Chem. A 117 2053 DOI: 10.1021/jp3108182
[70]
Boys S F, Bernardi F 1970 Mol. Phys. 19 553 DOI: 10.1080/00268977000101561
[71]
Gregory J K, Clary D C, Liu K, Brown M G, Saykally R J 1997 Science 275 814 DOI: 10.1126/science.275.5301.814
[72]
Skarmoutsos I, Masia M, Guardia E 2016 Chem. Phys. Lett. 648 102 DOI: 10.1016/j.cplett.2016.02.008
[73]
Otto K E, Xue Z, Zielke P, Suhm M A T 2014 Phys. Chem. Chem. Phys. 16 9849 DOI: 10.1039/c3cp54272f
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[4] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[5] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[6] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[7] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[8] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[9] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[10] Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations
Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣). Chin. Phys. B, 2019, 28(7): 078701.
[11] A passive source ranging method based on the frequency warping transform of the vertical intensity flux in shallow water
Yu-Bo Qi(戚聿波), Shi-Hong Zhou(周士弘), Meng-Xiao Yu(于梦枭), Shu-Yuan Du(杜淑媛), Mei Sun(孙梅), Ren-He Zhang(张仁和). Chin. Phys. B, 2019, 28(5): 054302.
[12] Observation of double pseudowaves in an ion-beam-plasma system
Zi-An Wei(卫子安), Jin-Xiu Ma(马锦秀), Kai-Yang Yi(弋开阳). Chin. Phys. B, 2018, 27(8): 085201.
[13] Enhancement of water self-diffusion at super-hydrophilic surface with ordered water
Xiao-Meng Yu(于晓萌), Chong-Hai Qi(齐崇海), Chun-Lei Wang(王春雷). Chin. Phys. B, 2018, 27(6): 060101.
[14] Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole
Shuang Liu(刘爽), Yan-Zhen Ma(马艳珍), Yun-Fan Yang(杨云帆), Song-Song Liu(刘松松), Yong-Qing Li(李永庆), Yu-Zhi Song(宋玉志). Chin. Phys. B, 2018, 27(2): 023103.
[15] Gravitational quasi-normal modes of static R2 Anti-de Sitter black holes
Hong Ma(马洪), Jin Li(李瑾). Chin. Phys. B, 2017, 26(6): 060401.
No Suggested Reading articles found!