|
|
Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica |
Hanqi Gong(龚菡琪)1,2,†, Chonghai Qi(齐崇海)1,3,†, Junwei Yang(杨俊伟)4, Jige Chen(陈济舸)1,5, Xiaoling Lei(雷晓玲)6,‡, Liang Zhao(赵亮)7,§, and Chunlei Wang(王春雷)1,5,¶ |
1 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physics, Shandong University, Jinan 250100, China; 4 School of Arts and Sciences, Shanghai Dianji University, Shanghai 201306, China; 5 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; 6 Department of Physics, East China University of Science and Technology, Shanghai 200237, China; 7 College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China |
|
|
Abstract Using molecular dynamics simulations, we have revealed a novel wetting phenomenon with a droplet on composite structures formed by embedded water into (111) surface of β-cristobalite hydroxylated silica. This can be attributed to the formation of a composite structure composed of embedded water molecules and the surface hydroxyl (-OH) groups, which reduces the number of hydrogen bonds between the composite structure and the water droplet above the composite structure. Interestingly, a small uniform strain ( 3%) applied to the crystal lattice of the hydroxylated silica surface can result in a notable change of the contact angles (>40°) on the surface. The finding provides new insights into the correlation between the molecular-scale interfacial water structures and the macroscopic wettability of the hydroxylated silica surface.
|
Received: 27 August 2020
Revised: 29 September 2020
Accepted manuscript online: 20 October 2020
|
PACS:
|
05.20.-y
|
(Classical statistical mechanics)
|
|
05.70.Np
|
(Interface and surface thermodynamics)
|
|
05.90.+m
|
(Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11674345), the Key Research Program of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH019), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
† These authors contributed equally to this work. ‡ Corresponding author. E-mail: leixiaoling@ecust.edu.cn §Corresponding author. E-mail: zhaoliang@yzu.edu.cn ¶Corresponding author. E-mail: wangchunlei@zjlab.org.cn
|
Cite this article:
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷) Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica 2021 Chin. Phys. B 30 010503
|
1 Yoon S S, Lee Y B and Khang D Y 2016 Appl. Surf. Sci. 370 117 2 Aslam M 2013 J. Phys. Conf. Ser. 439 012029 3 Kobayashi M, Susuki K, Otani T, Enomoto S, Otsuji H, Kuroda Y, Wada H, Shimojima A, Homma T and Kuroda K 2017 Nanoscale 9 8321 4 Yu E, Kim S C, Lee H J, Oh K H and Moon M W 2015 Sci. Rep. 5 9362 5 Innocenzi P and Malfatti L 2013 Chem. Soc. Rev. 42 4198 6 Zaera F 2012 Chem. Rev. 112 2920 7 Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H and Fan C 2018 Nature 559 593 8 Underwood T, Erastova V and Greenwell H C 2016 J. Phys. Chem. C 120 11433 9 Fang W, Liu L and Guo G 2017 Chem. Eur. J. 23 11253 10 Jurak M and Chibowski E 2007 Langmuir 23 10156 11 Gök M, Sert \cS, özevci G and Eral M 2018 Nucl. Sci. Tech. 29 95 12 Conradi M, Kocijan A, Zorko M and Jerman I 2012 Prog. Org. Coat. 75 392 13 Pawar P G, Xing R, Kambale R C, Kumar A M, Liu S and Latthe S S 2017 Prog. Org. Coat. 105 235 14 Mohammed S D, Majeed W Z, Naji N B and Fawzi N M 2017 Nucl. Sci. Tech. 28 153 15 Giri S, Trewyn B G, Stellmaker M P and Lin V S Y 2005 Angew. Chem. 44 5038 16 Tan A, Simovic S, Davey A K, Rades T, Boyd B J and Prestidge C A 2010 Mol. Pharmaceut. 7 522 17 Wang S, Segin N, Wang K, Masliyah J H and Xu Z 2011 J. Phys. Chem. C 115 10576 18 Dufficy M K, Geiger M T, Bonino C A and Khan S A 2015 Langmuir 31 12455 19 Zefirov V V, Sizov V E, Kondratenko M S, Elmanovich I V, Abramchuk S S, Sergeyev V G and Gallyamov M O 2019 J. Supercrit. Fluids 150 56 20 Wongchitphimon S, Rongwong W, Chuah C Y, Wang R and Bae T 2017 J. Membr. Sci. 540 146 21 Zhang S C, Ning S Y, Zhou J, Wang S Y, Zhang W, Wang X P and Wei Y Z 2020 Nucl. Sci. Tech. 31 34 22 Fu L, Li S, Han Z, Liu H and Yang H 2014 Chem. Commun. 50 10045 23 Sahu A K, Selvarani G, Pitchumani S, Sridhar P and Shukla A K 2007 J. Appl. Electrochem. 37 913 24 Chi Y S, Lee J K, Lee S and Choi I S 2004 Langmuir 20 3024 25 Debenedetti P G, Sciortino F and Zerze G H2020 Science 369 289 26 Gallo P, Amann-Winkel K, Angell C A, Anisimov M A, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos A Z, Russo J, Sellberg J A, Stanley H E, Tanaka H, Vega C, Xu L and Pettersson L G 2016 Chem. Rev. 116 7463 27 Conde M M, Gonzalez M A, Abascal J L and Vega C 2013 J. Chem. Phys. 139 154505 28 Feng Y, Chen J, Li X Z and Wang E 2016 Chin. Phys. B 25 013104 29 Sun C Q 2020 Chin. Phys. B 29 088203 30 Huang K, Rowe P, Chi C, Sreepal V, Bohn T, Zhou K G, Su Y, Prestat E, Pillai P B, Cherian C T, Michaelides A and Nair R R 2020 Nat. Commun. 11 1097 31 Qi C, Lei X, Zhou B, Wang C and Zheng Y 2019 J. Chem. Phys. 150 234703 32 Milischuk A A and Ladanyi B M 2011 J. Chem. Phys. 135 174709 33 Cox S J, Kathmann S M, Slater B and Michaelides A 2015 J. Chem. Phys. 142 184704 34 Yin Y, Wang J, Wang X, Li S, Jorgensen M R, Ren J, Meng S, Ma L and Schmidt O G 2019 Sci. Adv. 5 eaax6973 35 Kanduc M and Netz R R 2015 Proc. Natl. Acad. Sci. USA 112 12338 36 Shao M Z, Wang Y T and Zhou X 2020 Chin. Phys. B 29 080505 37 Du Q, Freysz E and Shen Y R 1994 Phys. Rev. Lett. 72 238 38 Yang J J, Meng S, Xu L F and Wang E G 2005 Phys. Rev. B 71 035413 39 Yang J, Meng S, Xu L F and Wang E G 2004 Phys. Rev. Lett. 92 146102 40 Phan A, Ho T A, Cole D R and Striolo A 2012 J. Phys. Chem. C 116 15962 41 Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H 2009 Phys. Rev. Lett. 103 137801 42 Cyran J D, Donovan M A, Vollmer D, Siro B F, Pezzotti S, Galimberti D R, Gaigeot M P, Bonn M and Backus E H G 2019 Proc. Natl. Acad. Sci. USA 116 1520 43 Guo W and Errington J R 2019 J. Phys. Chem. C 123 19649 44 Wang C, Qi C, Tu Y, Nie X and Liang S 2019 Phys. Rev. Mater. 3 065602 45 Guo P, Tu Y S, Yang J R, Wang C L, Sheng N and Fang H P 2015 Phys. Rev. Lett. 115 186101 46 Chen Y W and Cheng H P 2011 J. Chem. Phys. 134 114703 47 Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G and Jiang Y 2020 Nature 577 60 48 Schrader A M, Monroe J I, Sheil R, Dobbs H A, Keller T J, Li Y, Jain S, Shell M S, Israelachvili J N and Han S 2018 Proc. Natl. Acad. Sci. USA 115 2890 49 Ou X, Lin Z and Li J 2018 Chem. Commun. (Camb) 54 5418 50 Yu X M, Qi C H and Wang C L 2018 Chin. Phys. B 27 060101 51 Smith A M, Mohs A M and Nie S 2009 Nat. Nanotechnol. 4 56 52 Giri G, Verploegen E, Mannsfeld S C B, Atahan-Evrenk S, Kim D H, Lee S Y, Becerril H A, Aspuru-Guzik A, Toney M F and Bao Z 2011 Nature 480 504 53 Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M F and Nilsson A 2010 Nat. Chem. 2 454 54 Thirumalai D, Reddy G and Straub J E 2012 Acc. Chem. Res. 45 83 55 Liu X, Hong C, Ding Y, Liu X, Yao J and Dai S 2019 Chin. Phys. B 28 014703 56 Ho T A, Argyris D, Papavassiliou D V, Striolo A, Lee L L and Cole D R J M S 2011 Mol. Simulat. 37 172 57 Giovambattista N, Debenedetti P G and Rossky P J 2009 Proc. Natl. Acad. Sci. USA 106 15181 58 Romero-Vargas C S, Giovambattista N, Aksay I A and Debenedetti P G 2011 J. Phys. Chem. C 115 4624 59 Nie X, Zhou B, Wang C, Fang H J N S and T 2018 Nucl. Sci. Tech. 29 18 60 Wang C, Zhou B, Xiu P and Fang H 2011 J. Phys. Chem. C 115 3018 61 Limmer D T, Willard A P, Madden P and Chandler D 2013 Proc. Natl. Acad. Sci. USA 110 4200 62 Xu Z, Gao Y, Wang C and Fang H 2015 J. Phys. Chem. C 119 20409 63 Rotenberg B, Patel A J and Chandler D 2011 J. Am. Chem. Soc. 133 20521 64 Wang Y, Duan Z and Fan D 2013 Sci. Rep. 3 3505 65 Maier S, Stass I, Cerda J I and Salmeron M 2014 Phys. Rev. Lett. 112 126101 66 Björneholm O, Hansen M H, Hodgson A, Liu L M, Limmer D T, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz M M, Werner J and Bluhm H 2016 Chem. Rev. 116 7698 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|