Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 078701    DOI: 10.1088/1674-1056/28/7/078701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations

Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣)
Department of Physics, Huazhong Agriculture University, Wuhan 430070, China
Abstract  

Metal ions play critical roles in the interaction between deoxyribonucleic acid (DNA) and protein. The experimental research has demonstrated that the Mg2+ ion can affect the binding between transcription factor and DNA. In our work, by full-atom molecular dynamic simulation, the effects of the Mg2+ ion on the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB)/cAMP response elements (CRE) complex are investigated. It is illustrated that the number of hydrogen bonds formed at the interface between protein and DNA is significantly increased when the Mg2+ ion is added. Hence, an obvious change in the structure of the DNA is observed. Then the DNA base groove and base pair parameters are analyzed. We find that, due to the introduction of the Mg2+ ion, the DNA base major groove becomes narrower. A potential mechanism for this observation is proposed. It is confirmed that the Mg2+ ion can enhance the stability of the DNA-protein complex.

Keywords:  cAMP response element binding protein (CREB)      molecular dynamics (MD) simulation      hydrogen bond      Mg2+ ion  
Received:  27 March 2019      Revised:  09 April 2019      Accepted manuscript online: 
PACS:  87.14.-g (Biomolecules: types)  
  87.15.ap (Molecular dynamics simulation)  
  87.15.kj (Protein-polynucleotide interactions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11705064, 11675060, and 91730301), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2662016QD005 and 26622018JC017), and the Huazhong Agricultural University Scientific and Technological Self-Innovation Foundation Program, China (Grant No. 2015RC021).

Corresponding Authors:  Haiyou Deng, Ming Yi     E-mail:  hydeng@mail.hzau.edu.cn;yiming@mail.hzau.edu.cn

Cite this article: 

Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣) Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations 2019 Chin. Phys. B 28 078701

[1] Montminy M R and Bilezikjian L M 1987 Nature 328 175
[2] Lee B, Cao R, Choi Y S, Cho H Y, Rhee A D, Hah C K, Hoyt K R and Obrietan K 2009 J. Neurochemistry 108 1251
[3] Shaywitz A J and Greenberg M E 1999 Annu. Rev. Biochem. 68 821
[4] Carlezon W A Jr., Duman R S and Nestler E J 2005 Trends Neurosciences 28 436
[5] Lonze B E and Ginty D D 2002 Neuron 35 605
[6] Nibuya M, Nestler E J and Duman R S 1996 J. Neurosci. 16 2365
[7] Kida S and Serita T 2014 Brain Res. Bull. 105 17
[8] Silva A J, Kogan J H, Frankland P W and Kida S 1998 Annu. Rev. Neurosci. 21 127
[9] De Cesare D, Fimia G M and Sassonecorsi P 1999 Trends Biochem. Sci. 24 281
[10] Schumacher M A, Goodman R H and Brennan R G 2000 J. Biol. Chem. 275 35242
[11] Metallo S J, Paolella D N and Schepartz A 1997 Nucleic Acids Res. 25 2967
[12] Hurst H C 1995 Protein Profile 2 123
[13] Ellenberger T 1994 Curr. Opin. Struct. Biol. 4 12
[14] Moll J R, Acharya A, Gal J, Mir A A, Vinson C and Gal J 2002 Nucleic Acids Res. 30 1240
[15] Xi K, Wang F H, Xiong G, Zhang Z L and Tan Z J 2018 Biophys. J. 114 1776
[16] Sakamoto K, Karelina K and Obrietan K 2011 J. Neurochemistry 116 1
[17] Bendall A J and Molloy P L 1994 Nucleic Acids Res. 22 2801
[18] Chrivia J C, Kwok R P, Lamb N, Hagiwara M, Montminy M R and Goodman R H 1993 Nature 365 855
[19] Craig J C, Schumacher M A, Mansoor S E, Farrens D L, Brennan R G and Goodman R H 2001 J. Biological Chemistry 276 11719
[20] Richards J P, Bächinger H P, Goodman R H and Brennan R G 1996 J. Biol. Chem. 271 13716
[21] Impey S, Mccorkle S R, Cha-Molstad H, Dwyer J M, Yochum G S, Boss J M, Mcweeney S, Dunn J J, Mandel G and Goodman R H 2004 Cell 119 1041
[22] Wang H, Wang K, Guan Z, Jian Y, Jia Y, Kashanchi F, Zeng C and Zhao Y 2017 Chin. Phys. B 26 128702
[23] Gao G Y, Li Y, Wang W, Zhong D P, Wang S F and Gong Q H 2015 Chin. Phys. Lett. 32 048701
[24] Deng H Y, Jia Y and Zhang Y 2016 Acta Phys. Sin. 65 178701 (in Chinese)
[25] Maier J A, Martinez C, Kasavajhala K, Wickstrom L, Hauser K E and Simmerling C 2015 J. Chem. Theory Comput. 11 3696
[26] Ivani I, Dans P D, Noy A, et al.2016 Nat. Methods 13 55
[27] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[28] Joung I S and Rd C T 2009 J. Phys. Chem. B 113 13279
[29] Joung I S and Iii T E C 2008 J. Phys. Chem. B 112 9020
[30] Li P, Roberts B P, Chakravorty D K and Merz K M Jr. 2013 J. Chem. Theory Comput. 9 2733
[31] Li P and Merz K M Jr. 2014 J. Chem. Theory Comput. 10 289
[32] Essmann U 1995 J. Chem. Phys. 103 8577
[33] Martyna G J, Tobias D J and Klein M L 1994 J. Chem. Phys. 101 4177
[34] Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M, Onufriev A, Simmerling C, Wang B and Woods R J 2005 J. Comput. Chem. 26 1668
[35] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph 14 33
[36] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kalé L and Schulten K 2005 J. Comput. Chem. 26 1781
[37] Shao D D and Gao K F 2018 Chin. Phys. B 27 018701
[38] Coutsias E A, Seok C and Dill K A 2004 J. Comput. Chem. 25 1849
[39] Lavery R, Moakher M, Maddocks J H, Petkeviciute D and Zakrzewska K 2009 Nucleic Acids Res. 37 5917
[40] Hud N V and Polak M 2001 Curr. Opin. Struct. Biol. 11 293
[41] Yoo J and Aksimentiev A 2012 J. Phys. Chem. Lett. 3 45
[42] Yoo J and Aksimentiev A 2016 J. Chemical Theory Comput. 12 430
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[4] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[5] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[6] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[7] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[8] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[9] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[10] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[11] Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics
Wan-Run Jiang(姜万润)†, Rui Wang(王瑞)†, Xue-Guang Ren(任雪光), Zhi-Yuan Zhang(张志远), Dan-Hui Li(李丹慧), and Zhi-Gang Wang(王志刚)‡. Chin. Phys. B, 2020, 29(10): 103101.
[12] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[13] Enhancement of water self-diffusion at super-hydrophilic surface with ordered water
Xiao-Meng Yu(于晓萌), Chong-Hai Qi(齐崇海), Chun-Lei Wang(王春雷). Chin. Phys. B, 2018, 27(6): 060101.
[14] Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole
Shuang Liu(刘爽), Yan-Zhen Ma(马艳珍), Yun-Fan Yang(杨云帆), Song-Song Liu(刘松松), Yong-Qing Li(李永庆), Yu-Zhi Song(宋玉志). Chin. Phys. B, 2018, 27(2): 023103.
[15] Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores
Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2018, 27(2): 024702.
No Suggested Reading articles found!