Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098701    DOI: 10.1088/1674-1056/aba600
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel

Tie Li(李铁)1,2, Jun-Wei Li(李军委)2, Chun-Li Pang(庞春丽)2, Hailong An(安海龙)1,2, Yi-Zhao Geng(耿轶钊)2, Jing-Qin Wang(王景芹)1
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
2 Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
Abstract  Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodel sensory receptor and can be activated by moderate temperature (≥ 43 ℃). Though extensive researches on the heat-activation mechanism revealed some key elements that participate in the heat-sensation pathway, the detailed thermal-gating mechanism of TRPV1 is still unclear. We investigate the heat-activation process of TRPV1 channel using the molecular dynamics simulation method at different temperatures. It is found that the favored state of the supposed upper gate of TRPV1 cannot form constriction to ion permeation. Oscillation of S5 helix originated from thermal fluctuation and forming/breaking of two key hydrogen bonds can transmit to S6 helix through the hydrophobic contact between S5 and S6 helix. We propose that this is the pathway from heat sensor of TRPV1 to the opening of the lower gate. The heat-activation mechanism of TRPV1 presented in this work can help further functional study of TRPV1 channel.
Keywords:  TRPV1      heat-activation mechanism      molecular dynamics simulation      hydrogen bond      gating  
Received:  24 April 2020      Revised:  06 July 2020      Accepted manuscript online:  15 July 2020
PACS:  87.16.Vy (Ion channels)  
  87.10.Tf (Molecular dynamics simulation)  
  87.15.hp (Conformational changes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 81830061 and 11605038), the Natural Science Foundation of Hebei Province of China (Grant No. A2020202007), and the Natural Science Foundation of Tianjin of China (Grant No. 19JCYBJC28300).
Corresponding Authors:  Yi-Zhao Geng, Jing-Qin Wang     E-mail:  gengyz@hebut.edu.cn;jqwang@hebut.edu.cn

Cite this article: 

Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹) Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel 2020 Chin. Phys. B 29 098701

[1] Venkatachalam K and Montell C 2007 Annu. Rev. Biochem. 76 387
[2] Ramsey I S, Delling M and Clapham D E 2006 Annu. Rev. Physiol. 68 619
[3] Winn W P, Conlon P J, Lynn K L, Farrington M K, Creazzo T, Hawkins A F, Daskalakis N, Kwan S Y, Ebersviller S, Burchette J L, Pericak-Vance M A, Howell D N, Vance J M and Rosenberg P B 2005 Science 308 1801
[4] Reiser J, Polu K R, Möller C C, Kenlan P, Altintas M M, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith P L, Clapham D E and Pollak M R 2005 Nat. Genet. 37 739
[5] Walder R Y, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger M B, Beck G E, Englehardt R K, Carmi R and Sheffied V C 2002 Nat. Genet. 31 171
[6] Schlingmann K P, Weber S, Peters M, Nejsum L N, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth H W and Konrad M 2002 Nat. Genet. 31 166
[7] Myers B R, Bohlen C J and Julius D 2008 Neuron 58 362
[8] Yang F, Cui Y, Wang K and Zheng J 2010 Proc. Natl. Acad. Sci. USA 107 7083
[9] Lishko P V, Procko E, Jin X, Phelps C B and Gaudet R 2007 Neuron 54 905
[10] Clapham D E 2003 Nature 426 517
[11] Zheng J 2013 Compr. Physiol. 3 221
[12] Yang F and Zheng J 2014 ELife 3 e03255
[13] Caterina M J, Schumacher M A, Tominaga M, Rosen T A, Levine J D and Julius D 1997 Nature 389 816
[14] Brauchi S, Orta G, Salazar M, Rosenmann E and Latorre R 2006 J. Neurosci. 26 4835
[15] Liu B, Hui K and Qin F 2003 Biophys. J. 85 2988
[16] Steinberg X, Lespay-Rebolledo C and Brauchi S 2014 Front. Physiol. 5 171
[17] Bohlen C J, Priel A, Zhou S, King D, Siemens J and Julius D 2010 Cell 141 834
[18] Yang S, Yang F, Wei N, Hong J, Li B, Luo L, Rong M, Yarov-Yarovoy V, Zheng J, Wang K and Lai R 2015 Nat. Commun. 6 8297
[19] Cao X, Ma L, Yang F, Wang K and Zheng J 2014 J. Gen. Physiol. 143 75
[20] Yang F, Ma L, Cao X, Wang K and Zheng J 2014 J. Gen. Physiol. 143 91
[21] Caterina M J, Leffler A, Malmberg A B, Martin W J, Trafton J, Petersen-Zeitz K R, Koltzenburg M, Basbaum A I and Julius D 2000 Science 288 306
[22] Davis J B, Gray J, Gunthorpe M J, Hatcher J P, Davey P T, Overend P, Harries M H, Latcham J, Clapham C, Atkinson K, Hughes S A, Rance K, Grau E, Harper A J, Pugh P L, Rogers D C, Bingham S, Randall A and Sheardown S A 2000 Nature 405 183
[23] Julius D 2013 Annu. Rev. Cell Dev. Biol. 29 355
[24] Grandl J, Kim S E, Uzzell V, Bursulaya B, Petrus M, Bandell M and Patapoutian A 2010 Nat. Neurosci. 13 708
[25] Susankova K, Ettrich R, Vyklicky L, Teisinger J and Vlachova V 2007 J. Neurosci. 27 7578
[26] Papakosta M, Dalle C, Haythornthwaite A, Cao L, Stevens E B, Burgess G, Russell R, Cox S C, Phillips S C and Grimm C 2011 J. Biol. Chem. 286 39663
[27] Kim S E, Patapoutian A and Grandl J 2013 PLoS ONE 8 e59593
[28] Brauchi S, Orio P and Latorre R 2004 Proc. Natl. Acad. Sci. USA 101 15494
[29] Yao J, Liu B and Qin F 2011 Proc. Natl. Acad. Sci. USA 108 11109
[30] Yao J, Liu B and Qin F 2010 Biophys. J. 99 1743
[31] Chowdhury S, Jarecki B W and Chanda B 2014 Cell 158 1148
[32] Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V and Nilius B 2004 Nature 430 748
[33] Cao E, Liao M, Cheng Y and Julius D 2013 Nature 504 113
[34] Liao M, Cao E, Julius D and Cheng Y 2013 Nature 504 107
[35] Zheng W and Qin F 2015 J. Gen. Physiol. 145 443
[36] Wen H, Qing F and Zheng W 2016 Proteins 84 1938
[37] Wen H and Zheng W 2018 Biophys. J. 114 40
[38] Chugunov A O, Volynsky P E, Krylov N A, Nolde D E and Efremov R G 2016 Sci. Rep. 6 33112
[39] Hanson S M, Newstead S, Swartz K J and Sansom S P 2015 Biophys. J. 108 1425
[40] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[41] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[42] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kalé L and Schulten K 2005 J. Comput. Chem. 26 1781
[43] Best R B, Zhu X, Shim J, Lopes P E M, Mittal J, Feig M and MacKerell A D 2012 J. Chem. Theory Comput. 8 3257
[44] MacKerell A D, Bashford D, Bellott M et al. 1998 J. Phys. Chem. B 102 3586
[45] MacKerell A D, Feig M and Brooks C L 2004 J. Am. Chem. Soc. 126 698
[46] Pavelites J J, Gao J, Bash P A and MacKerell A D 1997 J. Comput. Chem. 18 221
[47] Bakan A, Meireles L M and Bahar I 2011 Bioinformatics 27 1575
[48] Bakan A, Dutta A, Mao W, Liu Y, Chennubhotla C, Lezon T R and Bahar I 2014 Bioinformatics 30 2681
[49] Pan Z, Chen J, Lü G, Geng Y, Zhang H and Ji Q 2012 J. Chem. Phys. 136 164313
[50] Salazar H, Jara-Oseguera A, Hernández-García E, Llorente I, Arias-Olguín I I, Soriano-García, Islas L D and Rosenbaum T 2009 Nat. Struct. Mol. Biol. 16 704
[51] Gregorio-Teruel L, Valente P, González-Ros J M, Fernández-Ballester G and Ferrer-Montiel A 2014 J. Gen. Physiol. 143 361
[52] Darré L, Furini S and Domene C 2015 J. Mol. Biol. 427 537
[53] Smart O S, Neduvelil J G, Wang X, Wallace B A and Sansom M S 1996 J. Mol. Graph. 14 354
[54] Jordt S E and Julius D 2002 Cell 108 421
[55] Yang F, Xiao X, Cheng W, Yang W, Yu P, Song Z, Yarov-Yarovoy V and Zheng J 2015 Nat. Chem. Biol. 11 518
[56] Vlachová V, Teisinger J, Sušánková K, Lyfenko A, Ettrich R and Vyklický L 2003 J. Neurosci. 23 1340
[57] Liu B, Ma W, Ryu S and Qin F 2004 J. Physiol. 560 627
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[7] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[8] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[9] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[10] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[13] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[14] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[15] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
No Suggested Reading articles found!