Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047102    DOI: 10.1088/1674-1056/23/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Molecular dynamics simulations of jet breakup and ejecta production from a grooved Cu surface under shock loading

He An-Min (何安民), Wang Pei (王裴), Shao Jian-Li (邵建立), Duan Su-Qing (段素青)
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Abstract  Large-scale non-equilibrium molecular dynamics simulations are performed to explore the jet breakup and ejecta production of single crystal Cu with a triangular grooved surface defect under shock loading. The morphology of the jet breakup and ejecta formation is obtained where the ejecta clusters remain spherical after a long simulation time. The effects of shock strength as well as groove size on the steady size distribution of ejecta clusters are investigated. It is shown that the size distribution of ejecta exhibits a scaling power law independent of the simulated shock strengths and groove sizes. This distribution, which has been observed in many fragmentation processes, can be well described by percolation theory.
Keywords:  molecular dynamics      ejection  
Received:  29 August 2013      Revised:  29 September 2013      Accepted manuscript online: 
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  62.50.+p  
Fund: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0201010).
Corresponding Authors:  He An-Min     E-mail:  he_anmin@iapcm.ac.cn
About author:  71.15.Pd; 62.50.+p

Cite this article: 

He An-Min (何安民), Wang Pei (王裴), Shao Jian-Li (邵建立), Duan Su-Qing (段素青) Molecular dynamics simulations of jet breakup and ejecta production from a grooved Cu surface under shock loading 2014 Chin. Phys. B 23 047102

[1] Asay J R, Mix L P I and Perry F C 1976 Appl. Phys. Lett. 29 284
[2] Asay J R 1976 Material Ejection from Shock-Loaded Free Surfaces of Aluminum and Lead (Sandia Report) SAND-76-0542
[3] Asay J R and Bertholf L D 1978 A Model for Estimating the Effects of Surface Roughness on Mass Ejection from Shocked Materials (Sandia Report) SAND-78-1256
[4] Andriot P, Chapron P and Olive F 1981 AIP. Conf. Proc. 78 505
[5] Sorenson D S, Minich R W, Romerro J L, Tunnel T W and Malone R M 2002 J. Appl. Phys. 92 5830
[6] Vogan W S, Anderson W W, Grover M and Hammerberg J E, et al. 2005 J. Appl. Phys. 98 113508
[7] Zellner M B, Grover M and Hammerberg J E, et al. 2007 J. Appl. Phys. 102 13522
[8] Zellner M B, Grover M and Hammerberg J E, et al. 2008 J. Appl. Phys. 103 123502
[9] Zellner M B, Dimonte G and Germann T C, et al. 2008 AIP. Conf. Proc. 1195 1047
[10] Dimonte G, Terrones G, CHerne F J and Ramaprabhu P 2013 J. Appl. Phys. 113 024905
[11] Holian B L, Germann T C, Lomdahl P S and Ravelo R 1999 AIP. Conf. Proc. 505 35
[12] Chen Q F, Jing F Q, Zhang J L, Chen D Q and Wang J H 2002 J. Phys.: Condens. Matter 14 10833
[13] Germann T C, Hammerberg J E and Holian B L 1999 AIP. Conf. Proc. 706 285
[14] Chen Q F, Cao X L, Zhang Y, Cai L C and Chen D Q 2005 Chin. Phys. Lett. 22 3151
[15] Shao J L, Wang P, He A M and Qin C S 2012 Acta Phys. Sin. 61 148701 (in Chinese)
[16] Wang P, Shao J L and Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese)
[17] Shao J L, Tang L and Wang P 2011 Procedia. Eng. 10 3322
[18] Shao J L, Wang P, He A M, Duan S Q and Qin C S 2013 J. Appl. Phys. 113 153501
[19] Durand O and Soulard L 2012 J. Appl. Phys. 111 044901
[20] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D 2001 Phys. Rev. B 63 224106
[21] An Q, Luo S N, Han L B, Zheng L Q and Tschauner O 2008 J. Phys.: Condens. Matter 20 095220
[22] He A M, Duan S Q, Shao J L, Wang P and Qin C S 2012 J. Appl. Phys. 112 074116
[23] He A M, Duan S Q, Shao J L, Wang P and Qin C S 2012 J. Appl. Phys. 112 103516
[24] Bontaz-Carion J and Pellegrini Y 2006 Adv. Eng. Mater. 8 480
[25] Xie Y, Han L B, An Q, Zheng L Q and Luo S N 2009 J. Appl. Phys. 105 066103
[26] Werdiger M, Arad B and Hens Z 1996 Laser and Particle Beams 14 133
[27] Yuan Q Z and Zhao Y P 2012 Proc. R. Soc. A 468 310
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!