|
|
Isolated sub-30-attosecond pulse generation using a multicycle two-color chirped laser and a static electric field |
Zhang Gang-Tai (张刚台) |
Department of Physics and Information Technology, Baoji University of Arts and Sciences, Baoji 721016, China |
|
|
Abstract We present a theoretical investigation of high-order harmonic generation in a chirped two-color laser field, which is synthesized by a 10-fs/800-nm fundamental chirped pulse and a 10-fs/1760-nm subharmonic pulse. It is shown that a supercontinuum can be produced using the multicycle two-color chirped field. However, the supercontinuum reveals a strong modulation structure, which is not good for the generation of an isolated attosecond pulse. By adding a static electric field to the multicycle two-color chirped field, not only the harmonic cutoff is extended remarkably, but also the quantum paths of the high-order harmonic generation (HHG) are modified significantly. As a result, both the extension of the supercontinuum and the selection of a single quantum path are achieved, producing an isolated 23-as pulse with a bandwidth of about 170.6 eV. Furthermore, the influences of the laser intensities on the supercontinuum and isolated attosecond pulse generation are investigated.
|
Received: 09 September 2013
Revised: 07 October 2013
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the Science Foundation of Baoji University of Arts and Sciences, China (Grant No. ZK11061) and the Natural Science Foundation of Education Committee of Shaanxi Province, China (Grant No. 2013JK0637). |
Corresponding Authors:
Zhang Gang-Tai
E-mail: gtzhang79@163.com
|
About author: 32.80.Rm; 42.65.Ky; 42.65.Re |
Cite this article:
Zhang Gang-Tai (张刚台) Isolated sub-30-attosecond pulse generation using a multicycle two-color chirped laser and a static electric field 2014 Chin. Phys. B 23 043202
|
[1] |
McFarland B K, Farrell J P, Bucksbaum P H and M Guhr M 2008 Science 322 1232
|
[2] |
Shafir D, Mairesse Y, Villeneuve D M, Corkum P B and Dudovich N 2009 Nat. Phys. 5 412
|
[3] |
Kanai T, Minemoto S and Sakai H 2005 Nature 435 470
|
[4] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[5] |
Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
|
[6] |
Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817
|
[7] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[8] |
Chang Z H 2005 Phys. Rev. A 71 023813
|
[9] |
Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S D and Nisoli M 2006 Science 314 443
|
[10] |
Zhang Q B, Lu P X, Lan P F, Hong W Y and Yang Z Y 2008 Opt. Express 16 9795
|
[11] |
Chang Z H 2007 Phys. Rev. A 76 051403(R)
|
[12] |
Mashiko H, Gilbertson S, Li C, Khan S D, Shakya M M, Moon E and Chang Z H 2008 Phys. Rev. Lett. 100 103906
|
[13] |
Feng X M, Gilberston S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K and Chang Z H 2009 Phys. Rev. Lett. 103 183901
|
[14] |
Zhao K, Zhang Q, Chini M, Wu Y, Wang X W and Chang Z H 2012 Opt. Lett. 37 3891
|
[15] |
Yudin G L, Bandrauk A D and Corkum P B 2006 Phys. Rev. Lett. 96 063002
|
[16] |
Mauritsson J, Johnsson P, Gustafsson E, L'Huillier A, Schafer K J and Gaarde M B 2006 Phys. Rev. Lett. 97 013001
|
[17] |
Pfeifer T, Gallmann L, Abel M J, Neumark D M and Leone S R 2006 Opt. Lett. 31 975
|
[18] |
Cao W, Lu P X, Lan P F, Wang X L and Yang G 2007 Opt. Express 15 530
|
[19] |
Luo J H, Hong W Y, Zhang Q B, Liu K L and Lu P X 2012 Opt. Express 20 9801
|
[20] |
Chen J G, Yang Y J and Chen Y 2011 Acta Phys. Sin. 60 033202 (in Chinese)
|
[21] |
Zeng Z N, Leng Y X, Li R X and Xu Z Z 2008 J. Phys. B: At. Mol. Opt. Phys. 41 215601
|
[22] |
Chen J G, Yang Y J, Zeng S L and Liang H Q 2011 Phys. Rev. A 83 023401
|
[23] |
Tang S S and Chen X F 2012 Phys. Rev. A 85 063816
|
[24] |
Kim B, Ahn J, Yu Y L, Cheng Y, Xu Z Z and Kim D E 2008 Opt. Express 16 10331
|
[25] |
Carrera J J and Chu S I 2007 Phys. Rev. A 75 033807
|
[26] |
Xiang Y, Niu Y P and Gong S Q 2009 Phys. Rev. A 79 053419
|
[27] |
Li W, Wang G L and Zhou X X 2011 Acta Phys. Sin. 60 123201 (in Chinese)
|
[28] |
Zhao S F, Zhou X X, Li P C and Chen Z J 2008 Phys. Rev. A 78 063404
|
[29] |
Xu J J, Zeng B and Yu Y L 2010 Phys. Rev. A 82 053822
|
[30] |
Feng L Q and Chu T S 2011 Phys. Rev. A 84 053853
|
[31] |
Du H C and Hu B T 2011 Phys. Rev. A 84 023817
|
[32] |
Zhang C J, Yao J P and Ni J L 2012 Opt. Express 20 24642
|
[33] |
Mohebbi M and Batebi S 2012 J. Electron. Spectrosc. Relat. Phenom. 185 578
|
[34] |
Zhang G T, Bai T T and Zhang M G 2012 Commun. Theor. Phys. 58 557
|
[35] |
Odžak S and Miloševic D B 2005 Phys. Rev. A 72 033407
|
[36] |
Wang B B, Li X F and Fu P M 1998 J. Phys. B: At. Mol. Opt. Phys. 31 1961
|
[37] |
Wang B B, Li X F and Fu P M 1999 Phys. Rev. A 59 2894
|
[38] |
Hong W Y, Lu P X, Cao W, Lan P F and Wang X L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 2321
|
[39] |
He H X, Guo Y H and He G Z 2012 Chin. Phys. B 21 080202
|
[40] |
Borca1 B, Flege A V, Frolov M V, Manakov N L, Milošević D B and StaraceA F 2000 Phys. Rev. Lett. 85 732
|
[41] |
Zhao G J, Guo X L, Shao T J and Xue K 2011 New J. Phys. 13 093035
|
[42] |
Zhang G T, Bai T T and Zhang M G 2012 Chin. Phys. B 21 054214
|
[43] |
Niu Y P, Xiang Y, Qi Y H and Gong S Q 2009 Phys. Rev. A 80 063818
|
[44] |
Xia C L, Zhang G T, Wu J and Liu X S 2010 Phys. Rev. A 81 043420
|
[45] |
Burnett K, Reed V C, Cooper J and Knight P L 1992 Phys. Rev. A 45 3347
|
[46] |
Cundiff S T and Ye J 2003 Rev. Mod. Phys. 75 325
|
[47] |
Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233
|
[48] |
Antoine P, Piraux B and Maquet A 1995 Phys. Rev. A 51 R1750
|
[49] |
Zeng Z N, Cheng Y, Song X H, Li R X and Xu Z Z 2007 Phys. Rev. Lett. 98 203901
|
[50] |
Wang B B, Cheng T W, Li X F and Fu P M 2005 Phys. Rev. A 72 063412
|
[51] |
Hong W Y, Lu P X, Lan P F, Zhang Q B and Wang X B 2009 Opt. Express 17 5139
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|