Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028801    DOI: 10.1088/1674-1056/23/2/028801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis of each branch current of serial solar cells by using an equivalent circuit model

Yi Shi-Guang (易施光)a, Zhang Wan-Hui (张万辉)a b, Ai Bin (艾斌)a, Song Jing-Wei (宋经纬)a, Shen Hui (沈辉)a
a Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
b Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
Abstract  In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff’s current and voltage law. First, parameters are obtained from the I–V (current–voltage) curves for typical monocrystalline silicon solar cells (125 mm×125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (Ish1 and Ish2), diode currents (ID1 and ID2), and load current (IL) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module.
Keywords:  solar cell      equivalent circuit      current property  
Received:  29 January 2013      Revised:  23 May 2013      Accepted manuscript online: 
PACS:  88.40.-j (Solar energy)  
  88.40.fc (Modeling and analysis)  
  88.40.jj (Silicon solar cells)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA050302), the National Natural Science Foundation of China (Grant Nos. 61076059 and 51202301), and the Science & Technology Research Project of Guangdong Province, China (Grant No. 2011A032304001).
Corresponding Authors:  Shen Hui     E-mail:  shenhui1956@163.com
About author:  88.40.-j; 88.40.fc; 88.40.jj; 88.40.H-

Cite this article: 

Yi Shi-Guang (易施光), Zhang Wan-Hui (张万辉), Ai Bin (艾斌), Song Jing-Wei (宋经纬), Shen Hui (沈辉) Analysis of each branch current of serial solar cells by using an equivalent circuit model 2014 Chin. Phys. B 23 028801

[1] Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R and Zhang W L 2012 Chin. Phys. B 21 118101
[2] Chen W B, Xu Z X, Li K, Chui Stephen S Y, Roy V A L, Lai P T and Che C M 2012 Chin. Phys. B 21 078401
[3] Zhang X D, Zheng X X, Xu S Z, Lin Q, Wei C C, Sun J, Geng X H and Zhao Y 2011 Chin. Phys. B 20 108801
[4] Zhang X B, Wang X L, Xiao H L, Yang C B, Hou Q F, Yin H B, Chen H and Wang Z G 2011 Chin. Phys. B 20 028402
[5] Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Brian B and Ma Z Q 2013 Chin. Phys. B 22 018801
[6] Zhou N, Zhang Y D, Sun H C, Qin D, Luo Y H, Li D M and Meng Q B 2011 Physics 40 72 (in Chinese)
[7] Wang D, Chu Z Z, Zhang C and Zou D C 2011 Physics 40 241 (in Chinese)
[8] Zhao J and Zeng Y P. 2011 Physics 40 233 (in Chinese)
[9] Qu B, Zhang S Y, Xie X, Chen Z J, Xiao L X, Gong Q H, Li F S and Guo T L 2011 Physics 40 223 (in Chinese)
[10] Fonash S J 2010 Solar Cell Device Physics, 2nd edn. (Waltham: Academic Press) pp. 1–8
[11] Shen H and Zeng Z Q 2009 Solar Photovoltaic Power Generation Technology (Beijing: Chemical Industry Press) pp. 34–36 (in Chinese)
[12] Zhang Z, Shen H, Zhu J J and Cai R X 2008 Proceeding of 10th China Solar Photovoltaic Conference, September 19–22, 2008, Changzhou, China, p. 964 (in Chinese)
[13] Bishop J W 1988 Solar Energy 25 73
[14] Aberle A G, Wenham S R and Green M A 1993 Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, May 10–14, 1993, Louisvills, USA, p. 133
[15] Aberle A G, Wenham S R and Green M A 1994 Prog. Photovolt: Res. Appl. 2 3
[16] Aberle A G, Robinson S J, Wang A H, Zhao J H, Wenham S R and Green M A 1993 Prog. Photovolt: Res. Appl. 1 133
[17] You H L and Zhang C F 2009 Chin. Phys. B 18 2096
[18] Yong S K, Sung-Mo K, Bruce J and Roland W 2013 Solar Energy Materials and Solar Cells 115 21
[19] Ding J L, Cheng X F, Zhai Z T, Zha J and Mao M Q 2007 Acta Energiae Solaris Sinica 28 1312 (in Chinese)
[20] Badescu V 2003 Energy 28 1165
[21] Hamdy M A and Call R L 1987 Solar Cells 20 119
[22] Handy R J 1967 Solid-State Electronics 10 765
[23] Mette A 2007 "New Concepts for Front Side Metallization of Industrial Silicon Solar Cells", Ph. D. Thesis (Freiburg im Breisgau: Fraunhofer-Institut fur Solare Energies Systeme)
[24] Hilali M M 2005 "Understanding and Development of Manufacturable Screen Printed Contacts on High Sheet-Resistance Emitters for Low-Cost Silicon Solar Cells", Ph. D. Thesis (Atlanta Botanical: Georgia Institute of Technology)
[25] Wang,M D, Zheng S Z, Wan X, Su Y R, Ke N, Zhao N, Wong K Y and Xu J B 2013 Solar Energy Materials and Solar Cells 108 17
[26] Bernardez L D and Buitrango H R 2006 Progress in Photovoltaics: Research and Applications 14 321
[27] Quaschning V and Hanitsch R 1996 Solar Energy 56 513
[28] Liu B Y, Duan S X and Kang Y 2008 Acta Energiae Solaris Sinica 29 188 (in Chinese)
[29] Li G L, Li M, Wang L L, Xiang M, Huang B, Zheng S F, Wei S X and Wang Y F 2011 Acta Opt. Sin. 30 0125001 (in Chinese)
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[5] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[6] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[7] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[8] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[9] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[10] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[11] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[12] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[13] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[14] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[15] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
No Suggested Reading articles found!