Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 027501    DOI: 10.1088/1674-1056/23/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of magnetic properties of soft magnetic phase on the energy product of an exchange-spring magnet

Jia Li-Ying (贾立颖), Yin Jin-Hua (阴津华), Ma Xing-Qiao (马星桥)
Department of Physics, University of Science and Technology Beijing (USTB), Beijing 100083, China
Abstract  Research on exchange-spring magnets has focused on the microstructures of the materials. However, research has seldom been concerned with the effect of magnetic properties of soft magnetic phase on the energy product of an exchange-spring magnet. In this paper, a simple one-dimensional numerical simulation is used to investigate this effect in a Nd2Fe14B-based exchange-spring magnet. The results reveal that the larger the anisotropy constant, the stronger the exchange coupling, and the higher the magnetization of the soft magnetic phase, the larger the energy product of an exchange-spring magnet. This provides evidence for choosing a soft magnetic phase in an exchange-spring magnet.
Keywords:  exchange-spring magnets      numerical simulation  
Received:  30 April 2013      Revised:  13 July 2013      Accepted manuscript online: 
PACS:  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.30.Gw (Magnetic anisotropy)  
  75.50.Ww (Permanent magnets)  
  75.40.Mg (Numerical simulation studies)  
Fund: Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of High Education of China, the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090006120019), the Engineering Research Institute Foundation of USTB (Grant No. YJ2012-006), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-BR-11-044B).
Corresponding Authors:  Yin Jin-Hua     E-mail:  yinjinhua@ustb.edu.cn
About author:  75.30.Cr; 75.30.Gw; 75.50.Ww; 75.40.Mg

Cite this article: 

Jia Li-Ying (贾立颖), Yin Jin-Hua (阴津华), Ma Xing-Qiao (马星桥) Effect of magnetic properties of soft magnetic phase on the energy product of an exchange-spring magnet 2014 Chin. Phys. B 23 027501

[1] Coehoorn R, Mooij D B, Duchateau J P W B and Buschow K H J 1988 J. de Phys. 49 C8-669
[2] Kneller E F and Hawig R 1991 IEEE Trans. Magn. 27 3588
[3] Skomski R and Coey J M D 1993 Phys. Rev. B 48 15812
[4] Shahzad F, Siddiqi S A, Im M Y, Avallone A, Fischer P, Hussain Z, Siddiqi I and Hellman F 2010 Chin. Phys. B 19 037504
[5] Chen Y Y, Shi Z, Zhou S M, Rui W B and Du J 2013 Chin. Phys. B 22 067504
[6] Hu J G, Liu J W and Ma Y Q 2001 Commun. Theor. Phys. 35 740
[7] He S L, Zhang H W, Rong C B, Chen R J and Shen B G 2005 Chin. Phys. 14 1055
[8] Coey J M D 2011 IEEE Trans. Magn. 47 4671
[9] Poudyal N and Liu J P 2013 J. Phys. D: Appl. Phys. 46 043001
[10] Shan Z S, Liu J P, Chakka V M, Zeng H and Jiang J S 2002 IEEE Tans. Magn. 38 2907
[11] Guo Z J, Jiang J S, Pearson J E, Bader S D and Liu J P 2002 Appl. Phys. Lett. 81 2029
[12] Amato M, Pini M G and Rettori A 1999 Phys. Rev. B 60 3414
[13] Fullerton E E, Jiang J S, Grimsditch M, Sowers C H and Bader S D 1998 Phys. Rev. B 58 12193
[14] Zhao G P and Wang X L 2006 Phys. Rev. B 74 012409
[15] Herbst J F, Croat J J, Pinkerton F E and Yelon W B 1984 Phys. Rev. B 29 4176
[16] Crew D C, Kim J, Lewis L H and Barmak K 2001 J. Magn. Magn. Mater. 233 257
[17] Jiang J S, Pearson J E, Liu Z Y, Kabius B, Trasobares S, Miller D J, Bader S D, Lee D R, Haskel D, Srajer G and Liu J P 2004 Appl. Phys. Lett. 85 5293
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!