Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 027701    DOI: 10.1088/1674-1056/23/2/027701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Resonance-mode effect on piezoelectric microcantilever performance in air, with a focus on the torsional modes

Qiu Hua-Cheng (邱华诚)a b, Dara Feilia, Wu Xue-Zhong (吴学忠)b, Helmut Seidela
a Saarland University, Chair of Micromechanics, Microfluidics/Microactuators, 66123 Saarbrücken, Germany;
b National University of Defense Technology, College of Mechanical Engineering and Automation, Changsha 410073, China
Abstract  A high quality factor is preferred for a microresonator sensor to improve the sensitivity and resolution. In this paper we systematically investigate the performance of the microcantilever in different resonance modes, which are the first three flexural modes, the first lateral mode, and the first and the second torsional modes. An aluminum nitride-based piezoelectric cantilever is fabricated and tested under controlled pressure from an ultra-high vacuum to a normal atmosphere, using a custom-built vacuum chamber. From the experiment results, it can be seen that the torsional modes exhibit better quality factors than those of the flexural and lateral ones. Finally, an analytical model for the air damping characteristics of the torsional mode cantilever is derived and verified by comparing with experimental results.
Keywords:  microcantilever      aluminum nitride      torsional mode      quality factor  
Received:  21 March 2013      Revised:  14 June 2013      Accepted manuscript online: 
PACS:  77.65.Fs (Electromechanical resonance; quartz resonators)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
Corresponding Authors:  Qiu Hua-Cheng     E-mail:  h.qiu@lmm.uni-saarland.de
About author:  77.65.Fs; 85.50.-n

Cite this article: 

Qiu Hua-Cheng (邱华诚), Dara Feili, Wu Xue-Zhong (吴学忠), Helmut Seidel Resonance-mode effect on piezoelectric microcantilever performance in air, with a focus on the torsional modes 2014 Chin. Phys. B 23 027701

[1] Waggoner P S and Craighead H G 2007 Lab. Chip. 7 1238
[2] Fadel L, Lochon F, Dufour I and Francais O 2004 J. Micromech. Microeng. 14 23
[3] Zhao H, Luo W, Zheng H Y, Yang J L and Yang F H 2012 Chin. Phys. B 21 100702
[4] Jin D Z, Li X X, Zhang Z X, Bao H H, Wang Y L, Liu J and Yu H T 2007 Proceedings of the IEEE 20th International Conference on Micro-electro Mechanical Systems, January 21–25, 2007, Hyoko, Japan, p. 107
[5] Zhou J, Li P, Zhang S, Huang Y, Yang P, Bao M and Ruan G 2003 Microelectron. Eng. 69 37
[6] Ababneh A, Schmid U, Hernando J, Sánchez-Rojas J L and Seidel H 2010 Mater. Sci. Eng. B 172 253
[7] Lübbe J, Schnieder H and Reichling M 2010 Proceedings of the 13th International Conference on Non-Contact Atomic Force Microscopy, July 31–August 4, 2010, Kanazawa, Japan, p. 30
[8] Xia X and Li X 2008 Rev. Sci. Instrum. 79 074301
[9] Blom F R, Bouwstra S, Elwenspoek M and Fluitman J H J 1992 J. Vac. Sci. Technol. B 10 19
[10] Naeli K and Brand O 2009 J. Appl. Phys. 105 014908
[11] Lu J, Ikehara T, Zhang Y, Mihara T, Itoh T and Maeda R 2008 Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, April 9–11, 2008, French Riviera, France, p. 60
[12] Dohn S, Sandberg R, Svendsen W and Boisen A 2005 Appl. Phys. Lett. 86 233501
[13] Qiu H C, Schwarz P, Feili D, Merzsch S, Peiner E, Wu X Z and Seidel H 2013 Microsyst. Technol. 19 1131
[14] Qiu H C, Schwarz P, Völlm H, Feili D, Wu X Z and Seidel H 2013 J. Micromech. Microeng. 23 045007
[15] Zener C 1938 Phys. Rev. 53 90
[16] Hao Z, Erbil A and Ayazi F 2003 Sens. Actuators A 109 156
[17] Xie H, Vitard J, Haliyo S and Régnier S 2008 Meas. Sci. Technol. 19 055207
[18] Green C P and Sader J E 2002 J. Appl. Phys. 92 6262
[19] Landau L D and Lifshitz E M 2004 Fluid Mechanics, 2nd edn. (Oxford: Elsevier) p. 89
[20] Burgdorfer A 1959 J. Basic Eng. 81 94
[21] Hosaka H, Itao K and Kuroda S 1995 Sens. Actuators A 49 87
[1] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[2] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[3] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[4] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[5] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[6] Influence comparison of N2 and NH3 nitrogen sources on AlN films grown by halide vapor phase epitaxy
Jing-Jing Chen(陈晶晶), Jun Huang(黄俊), Xu-Jun Su(苏旭军), Mu-Tong Niu(牛牧童), Ke Xu(徐科). Chin. Phys. B, 2020, 29(7): 076802.
[7] Analysis of iris-loaded resonance cavity in miniaturized maser
Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣). Chin. Phys. B, 2020, 29(5): 050601.
[8] Effect of AlN coating on hydrogen permeability and surface structure of VT6 alloy by vacuum arc ion plating
Zi-Yi Ding(丁子祎). Chin. Phys. B, 2019, 28(10): 108101.
[9] Coupled resonator-induced transparency on a three-ring resonator
Xinquan Jiao(焦新泉), Haobo Yu(于皓博), Miao Yu(于淼), Chenyang Xue(薛晨阳), Yongfeng Ren(任勇峰). Chin. Phys. B, 2018, 27(7): 074212.
[10] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[11] High quality factor superconducting coplanar waveguide fabricated with TiN
Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(5): 058402.
[12] Microwave interrogation cavity for the rubidium space cold atom clock
Wei Ren(任伟), Yuan-Ci Gao(高源慈), Tang Li(李唐), De-Sheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(6): 060601.
[13] Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain
Luo Ji-Run (罗积润), Cui Jian (崔健), Zhu Min (朱敏), Guo Wei (郭炜). Chin. Phys. B, 2013, 22(6): 067803.
[14] Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits
Xiong Kang(熊康), Xiao Xi(肖希), Hu Ying-Tao(胡应涛), Li Zhi-Yong(李智勇), Chu Tao(储涛), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中) . Chin. Phys. B, 2012, 21(7): 074203.
[15] Performance of La2O3/InAlN/GaN metal–oxide–semiconductor high electron mobility transistors
Feng Qian(冯倩), Li Qian(李倩), Xing Tao(邢韬) Wang Qiang(王强), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) . Chin. Phys. B, 2012, 21(6): 067305.
No Suggested Reading articles found!