Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 060601    DOI: 10.1088/1674-1056/25/6/060601
GENERAL Prev   Next  

Microwave interrogation cavity for the rubidium space cold atom clock

Wei Ren(任伟)1, Yuan-Ci Gao(高源慈)2, Tang Li(李唐)1, De-Sheng Lü(吕德胜)1, Liang Liu(刘亮)1
1 Key Laboratory of Quantum Optics and Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  

The performance of space cold atom clocks (SCACs) should be improved thanks to the microgravity environment in space. The microwave interrogation cavity is a key element in a SCAC. In this paper, we develop a microwave interrogation cavity especially for the rubidium SCAC. The interrogation cavity has two microwave interaction zones with a single feed-in source, which is located at the center of the cavity for symmetric coupling excitation and to ensure that the two interaction zones are in phase. The interrogation cavity has a measured resonance frequency of 6.835056471 GHz with a loaded quality factor of nearly 4200, which shows good agreement with simulation results. We measure the Rabi frequency of the clock transition of the rubidium atom in each microwave interaction zone, and subsequently demonstrate that the distributions of the magnetic field in the two interaction zones are the same and meet all requirements of the rubidium SCAC.

Keywords:  interrogation cavity      microwave interaction      phase      quality factor  
Received:  28 January 2016      Revised:  24 March 2016      Accepted manuscript online: 
PACS:  06.30.Ft (Time and frequency)  
  37.30.+i (Atoms, molecules, andions incavities)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11034008), the Fund from the Ministry of Science and Technology of China (Grant No. 2013YQ09094304), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.

Corresponding Authors:  De-Sheng Lü, Liang Liu     E-mail:  dslv@siom.ac.cn;liang.liu@siom.ac.cn

Cite this article: 

Wei Ren(任伟), Yuan-Ci Gao(高源慈), Tang Li(李唐), De-Sheng Lü(吕德胜), Liang Liu(刘亮) Microwave interrogation cavity for the rubidium space cold atom clock 2016 Chin. Phys. B 25 060601

[1] Laurent P, Massonnet D, Cacciapuoti L and Salomon C 2015 Comptes Rendus Physique 16 540
[2] Sullivan D B, Ashby N, Donley E A, Heavner T P, Hollberg L W, Jefferts S R, Klipstein W M, Phillips W D and Seidel D J 2005 Advances in Space Research 36 107
[3] Fertig C, Gibble K, Klipstein B, Maleki L, Seidel D and Thompson R 2000 Proceedings of the 2000 IEEE/EIA International, IEEE, 2000, pp. 676-679
[4] Lü D S, Wang B, Li T, and Liu L 2010 Chin. Opt. Lett. 8 735
[5] Bize S, Laurent P, Abgrall M, Marion H, Maksimovic I, Cacciapuoti L, Grünert J, Vian C, Pereira dos Santos F, Rosenbusch P, Lemonde, Santarelli, Wolf P, Clairon A, Luiten A, Tobar M and Salomon C 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S449
[6] Ramsey N F 1950 Phys. Rev. 78 695
[7] Clairon A, Salomon C, Guellati S and Phillips W D 1991 Europhys. Lett. 16 165
[8] Lü D S, Qu Q Z, Wang B, Zhao J B, Liu L and Wang Y Z 2011 Chin. Phys. Lett. 28 063201
[9] Wang B, Lü D S, Qu Q Z, Zhao J B, Li T, Liu L and Wang Y Z 2011 Chin. Phys. Lett. 28 063701
[10] Bauch A, Heindorff T and Schröder R 1985 IEEE Trans. Instrum. Meas. 34 136
[11] Li R and Gibble K 2005 Proceedings of the 2005 IEEE International, Frequency Control Symposium and Exposition, 2005, p. 6
[12] Jefferts S R, Shirley J H, Ashby N, Burt E A and Dick G J 2005 IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 52 2314
[13] Bize S, Sortais Y, Mandache C, Clairon A and Salomon C 2001 IEEE Trans. Instrum. Meas. 50 503
[14] Laurent P, Lemonde P, Simon E, Santarelli G, Clairon A, Dimarcq N, Petit P, Audoin and Salomon C 1998 Eur. Phys. J. D 3 201
[15] Lacey R F 1968 Proceedings of the 22nd Annual Symposium on Frequency Control, IEEE, pp. 545-558
[16] Laurent P, Abgrall M, Jentsch C, Lemonde P, Santarelli G, Clairon A, Manksimovic, Bize S, Salomon C, Blonde D, Vega J F, Grosjean O, Picard F, Saccoccio M, Chaubet M, Ladiette N, Guillet L, Zenone I, Delaroche C and Sirmain C 2006 Appl. Phys. B 84 683
[17] Dick G J and Klipstein W M 2003 Proceedings of the Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003, IEEE International, pp. 1032-1036
[18] Sortais Y, Bize S, Nicolas C, Clairon A, Salomon C and Williams C 2000 Phys. Rev. Lett. 85 3117
[19] Vanier J and Audoin C 1989 The Quantum Physics of Atomic Frequency Standards (CRC Press)
[20] Schröder R, Hübner U and Griebsch D 2002 IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 49 383
[21] Liu C and Wang Y H 2015 Chin. Phys. B 24 010602
[22] Collin R E 2001 Foundation for Microwave Engineering (Wiley-IEEE Press)
[23] Collin R E 1991 Field Theory of Guided Waves (Wiley-IEEE Press)
[24] Ren W, Xiang J F, Zhang Y T, Wang B, Qu Q Z, Zhao J B, Ye M F, Lü D S and Liu L 2015 Vacuum 116 54
[25] Rabi I I, Millman S, Kusch P and Zacharias J 1939 Phys. Rev. 55 526
[26] Qu Q Z, Wang B, Lü D S, Zhao J B, Ye M F, Ren W, Xiang J F and Liu L 2015 Chin. Opt. Lett. 13 061405
[27] Riehle F 2006 Frequency standards: basics and applications (John Wiley and Sons)
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[7] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[8] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[9] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[10] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[11] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[12] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[13] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[14] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[15] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
No Suggested Reading articles found!