CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High contrast atomic magnetometer based on coherent population trapping |
Yang Ai-Lin (杨爱林), Yang Guo-Qing (杨国卿), Xu Yun-Fei (徐云飞), Lin Qiang (林强) |
Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract We present an experimental and theoretical investigation of the coherent population trapping (CPT) resonance excited on the D1 line of 87Rb atoms by bichromatic linearly polarized laser light. The experimental results show that a lin‖lin transition scheme is a promising alternative to the conventional circular–circular transition scheme for an atomic magnetometer. Compared with the circular light transition scheme, linear light accounts for high-contrast transmission resonances, which makes this excitation scheme promising for high-sensitivity magnetometers. We also use linear light and circular light to detect changes of a standard magnetic field, separately.
|
Received: 28 December 2012
Revised: 28 September 2013
Accepted manuscript online:
|
PACS:
|
76.70.Hb
|
(Optically detected magnetic resonance (ODMR))
|
|
42.62.Eh
|
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB329501), the National Natural Science Foundation of China (Grant Nos. 60925022 and 11125863), and the Fundamental Research Funds for the Central Universities (Grant No. 2012FZA3001). |
Corresponding Authors:
Lin Qiang
E-mail: qlin@zju.edu.cn
|
About author: 76.70.Hb; 42.62.Eh; 42.50.Gy; 32.10.Dk |
Cite this article:
Yang Ai-Lin (杨爱林), Yang Guo-Qing (杨国卿), Xu Yun-Fei (徐云飞), Lin Qiang (林强) High contrast atomic magnetometer based on coherent population trapping 2014 Chin. Phys. B 23 027601
|
[1] |
Sarma B S P, Verma B K and Satyanarayana S V 1999 Geophysics 64 1735
|
[2] |
Livanov M N, Kozlov A N, Sinelnikova S E, Kholodov J A, Markin V P, Gorbach A M and Korinewsky A V 1981 Adv. Cardiol. 28 78
|
[3] |
Bison G, Wynands R and Weis A 2003 Appl. Phys. B: Lasers Opt. 76 325
|
[4] |
Dehmelt H G 1957 Phys. Rev. 105 1487
|
[5] |
Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
|
[6] |
Patton B, Versolato O, Hovde D C, Corsini E, Higbie J and Budker D 2012 Appl. Phys. Lett. 101 083502
|
[7] |
Zhang S L, Liu Y B, Zeng J, Wang Y L, Kong X Y and Xie X M 2012 Acta Phys. Sin. 61 020701 (in Chinese)
|
[8] |
Gu H F, Cai W Y and Wei Y K 2012 Chin. Phys. B 21 040702
|
[9] |
Huang K K, Li N and Lu X H 2012 Chin. Phys. Lett. 29 100701
|
[10] |
Li L, Zhou Q L, Shi Y L, Zhao D M, Zhang C L, Zhao K, Tian L, Zhao H, Bao R M and Zhao S Q 2011 Acta Phys. Sin. 60 019503 (in Chinese)
|
[11] |
Alzetta G, Gozzini A, Moi L and Orriols G 1976 Nuovo Cim. 36 5
|
[12] |
Jau Y Y, Miron E, Post A B, Kuzma N N and Happer W 2004 Phys. Rev. Lett. 93 160802
|
[13] |
Taichenachev A V, Yudin V I, Velichansky V L, Kargapoltsev S V, Wynands R, Kitching J and Hollberg L 2004 JETP Lett. 80 236
|
[14] |
Cyr N, Tetu M and Breton M 1993 IEEE Trans. Instrum. Meas. 42 640
|
[15] |
Vanier J 2005 Appl. Phys. B 81 421
|
[16] |
Schwindt P D D, Knappe S, Shah V, Hollberg L and Kitching J 2004 Appl. Phys. Lett. 85 6409
|
[17] |
Guo T, Deng K, Chen X Z and Wang Z 2009 Appl. Phys. Lett. 94 151108
|
[18] |
Kazakov G, Matisov B, Mazets I, Mileti G and Delporte J 2005 Phys. Rev. A 72 063408
|
[19] |
Taichenachev A V, Yudin V I, Velichansky V L and Zibrov S A 2005 JETP Lett. 82 398
|
[20] |
Watabe K, Ikegami T, Takamizawa A, Yanagimachi S, Ohshima S and Knappe S 2009 Appl. Opt. 48 1098
|
[21] |
Zibrov S A, Novikova I, Phillips D F, Walsworth R L, Zibrov A S, Velichansky V L, Taichenachev A V and Yudin V I 2010 Phys. Rev. A 81 013833
|
[22] |
Corney A 1977 Atomic and Laser Spectroscopy (Oxford: Clarendon) p. 672
|
[23] |
Wynands R and Nagel A 1999 Appl. Phys. B: Lasers Opt. 68 1
|
[24] |
Liu G and Gu S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 035004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|