Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 067803    DOI: 10.1088/1674-1056/22/6/067803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain

Luo Ji-Run (罗积润)a, Cui Jian (崔健)b, Zhu Min (朱敏)a, Guo Wei (郭炜)a
a Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
b College of Electronic Information and Control Engineering, North China University of Technology, Beijing 100124, China
Abstract  Based on space-charge wave theory, the formulae of the beam-wave coupling coefficient and the beam-loaded conductance are given for the beam-wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of the nonbeam-loaded quality factor of the coupled cavity chain to the beam quality factor is used to determine the stability of the beam-wave interaction. As an example, the stabilities of the beam-wave interaction in a three-gap Hughes-type coupled cavity chain are discussed with the formulae and the CST code for the operations of the 2π, π, and π/2 modes, respectively. The results show that stable operation of the 2π, π, and π/2 modes may all be realized in an extended-interaction klystron with the three-gap Hughes-type coupled cavity chain.
Keywords:  three-gap Hughes-type coupled cavity chain      coupling coefficient      beam-loaded conductance      beam quality factor      stability  
Received:  29 October 2012      Revised:  24 November 2012      Accepted manuscript online: 
PACS:  78.70.Gq (Microwave and radio-frequency interactions)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11205162).
Corresponding Authors:  Luo Ji-Run     E-mail:  luojirun@mail.ie.ac.cn

Cite this article: 

Luo Ji-Run (罗积润), Cui Jian (崔健), Zhu Min (朱敏), Guo Wei (郭炜) Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain 2013 Chin. Phys. B 22 067803

[1] Wessel-Berg T 1957 Microwave Laboratory, Stanford University, Technical Reports p. 376
[2] Chodorow M and Wessel-Berg T 1961 IRE Trans. Electron. Dev. 8 44
[3] Shin Y M and Park G S 2004 J. Korean Phys. Soc. 44 1239
[4] Roitman A, Horoyski P, Berry D and Steer B 2006 Proceeding of the Seventh IEEE International Vacuum Electronics Conference, April 25-27, Monterey, California, USA, p. 191
[5] Roitman A, Berry D and Steer B 2005 IEEE Trans. Electron. Dev. 52 895
[6] Chen L, Cheng F H, Wang J D, Yang C Y and Chu K R 2002 Proceeding of the Third IEEE International Vacuum Electronics Conference, April 23-25, Monterey, California, USA, p. 322
[7] Randall J P, Perring D and Nuth V R 1980 Proceedings of the Conference on Vacuum Devices 30 455
[8] Nguyen K T, Pershing D E, Abe D K and Levush B 2006 IEEE Trans. Plasma Sci. 34 576
[9] Preist D H and Leidigh W J 1963 IEEE Trans. Electron. Dev. 10 201
[10] Lien E and Robinson D 1966 Technical Report for United States Army Electronics Command, No. ECOM-01362-F
[11] Quan Y, Ding Y G and Wang S Z 2009 IEEE Trans. Plasma Sci. 37 30
[12] Pierce J R and Shepherd W G 1947 J. Bell System Tech. 26 663
[13] Branch G M Jr 1961 IRE Trans. Electron. Dev. 8 193
[14] Cui J, Luo J R, Zhu M and Guo W 2011 Acta Phys. Sin. 60 051101 (in Chinese)
[16] Kantrowitz F and Tammaru I 1988 IEEE Trans. Electron. Dev. 35 2018
[17] Perring D, Philips G and Smith M J 1976 Advisory Group for Aerospace Research and Development Conference Proceedings, Hayes, England, May 1-8, p. 197
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
No Suggested Reading articles found!