CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High quality above 3-μm mid-infrared InGaAsSb/AlGaInAsSb multiple-quantum well grown by molecular beam epitaxy |
Xing Jun-Liang (邢军亮), Zhang Yu (张宇), Xu Ying-Qiang (徐应强), Wang Guo-Wei (王国伟), Wang Juan (王娟), Xiang Wei (向伟), Ni Hai-Qiao (倪海桥), Ren Zheng-Wei (任正伟), He Zhen-Hong (贺振宏), Niu Zhi-Chuan (牛智川) |
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract The GaSb-based laser shows its superiority in the 3–4 μm wavelength range. However, for a quantum well (QW) laser structure of InGaAsSb/AlGaInAsSb multiple-quantum well (MQW) grown on GaSb, uniform content and high compressive strain in InGaAsSb/AlGaInAsSb are not easy to control. In this paper, the influences of the growth temperature and compressive strain on the photoluminescence (PL) property of a 3.0-μm InGaAsSb/AlGaInAsSb MQW sample are analyzed to optimize the growth parameters. Comparisons among the PL spectra of the samples indicate that the In0.485GaAs0.184Sb/Al0.3Ga0.45In0.25As0.22Sb0.78 MQW with 1.72% compressive strain grown at 460 ℃ posseses the optimum optical property. Moreover, the wavelength range of the MQW structure is extended to 3.83 μm by optimizing the parameters.
|
Received: 25 April 2013
Revised: 10 May 2013
Accepted manuscript online:
|
PACS:
|
78.55.Cr
|
(III-V semiconductors)
|
|
78.66.Fd
|
(III-V semiconductors)
|
|
78.67.De
|
(Quantum wells)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB932904, 2012CB932701, 2011CB922201, and 2010CB327600), the National Special Funds for the Development of Major Research Equipment and Instruments, China (Grant No. 2012YQ140005), and the National Natural Science Foundation of China (Grant Nos. 61274013, U1037602, and 61290303). |
Corresponding Authors:
Niu Zhi-Chuan
E-mail: zcniu@semi.ac.cn
|
Cite this article:
Xing Jun-Liang (邢军亮), Zhang Yu (张宇), Xu Ying-Qiang (徐应强), Wang Guo-Wei (王国伟), Wang Juan (王娟), Xiang Wei (向伟), Ni Hai-Qiao (倪海桥), Ren Zheng-Wei (任正伟), He Zhen-Hong (贺振宏), Niu Zhi-Chuan (牛智川) High quality above 3-μm mid-infrared InGaAsSb/AlGaInAsSb multiple-quantum well grown by molecular beam epitaxy 2014 Chin. Phys. B 23 017805
|
[1] |
Lin C, Grau M, Dier O and Amann M C 2004 Appl. Phys. Lett. 84 5088
|
[2] |
Donetsky D, Kipshidze G, Shterengas L, Hosoda T and Belenky G 2007 Electron. Lett. 43 810
|
[3] |
Chen J F, Donetsky D, Shterengas L, Kisin M V, Kipshidze G and Belenky G 2008 IEEE J. Quantum. Electon. 44 1204
|
[4] |
Gupta J A, Barrios P J, Lapointe J, Aers G C and Storey C 2009 Appl. Phys. Lett. 95 041104
|
[5] |
Naehle L, Belahsene S, von Edlinger M, Fischer M, Boissier G, Grech P, Narcy G, Vicet A, Rouillard Y, Koeth J and Worschech L 2011 Electron. Lett. 47 46
|
[6] |
Rattunde M, Schmitz J, Kaufel G, Kelemen M, Weber J and Wagner J 2006 Appl. Phys. Lett. 88 081115
|
[7] |
Kashani-Shirazi K, Vizbaras K, Bachmann A, Arafin S and Amann M C 2012 IEEE Photonic. Tech. Lett. 21 1106
|
[8] |
Belenky G, Shterengas L, Kipshidze G and Hosoda T 2011 IEEE. J. Sel. Top. Quant. 17 1426
|
[9] |
Belenky G, Shterengas L, Wang D, Kipshidze G and Vorobjev L 2009 Semicond. Sci. Tech. 24 115013
|
[10] |
Hosoda T, Kipshidze G, Tsvid G, Shterengas L and Belenky G 2010 IEEE Photonic. Tech. Lett. 22 718
|
[11] |
Vizbaras K and Amann M C 2012 Semicond. Sci. Technol. 27 032001
|
[12] |
Wu X H, Elsass C R, Abare A, Mack M, Keller S, Petroff P M, DenBaars S P, Speck J S and Rosner S J 1998 Appl. Phys. Lett. 72 692
|
[13] |
Dutta P S, Koteswara Rao K S R, Bhat H L and Kumar V 1995 Appl. Phys. A 61 149
|
[14] |
Kaspi R and Evans K R 1995 Appl. Phys. Lett. 67 819
|
[15] |
Nagle J, Landesman J P, Larive M, Mottet C and Bois P 1993 J. Cryst. Growth 127 550
|
[16] |
Yuan Z L, Xu Z Y, Xu J Z, Zheng B Z, Luo C P, Yang X P and Zhang P H 1996 Chin. Phys. 4 523
|
[17] |
Muraki K, Fukatsu S, Shiraki Y and Ito R 1992 Appl. Phys. Lett. 61 557
|
[18] |
Motyka M, Sek G, Ryczko K, Misiewicz J, Belahsene S, Boissier G and Rouillard Y 2009 J. Appl. Phys. 106 066104
|
[19] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
[20] |
Donati G P, Kaspi R and Malloy K J 2003 J. Appl. Phys. 94 5814
|
[21] |
Gu Y, Zhang Y G, Song Y X, Ye H, Cao Y Y, Li A Z and Wang S M 2013 Chin. Phys. B 22 37802
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|