CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
In situ electronic structural study of VO2 thin film across the metal–insulator transition |
Emin Muhemmed (伊明江·买买提), Abduleziz Ablat (阿布都艾则孜·阿布来提), Wu Rui (吴蕊), Wang Jia-Ou (王嘉鸥), Qian Hai-Jie (钱海杰), Kurash Ibrahim (奎热西·依布拉欣) |
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insulator transition (MIT) temperature (TMIT=67 ℃). The spectra show evidence for changes in the electronic structure depending on temperature. Across the TMIT, pure V 3d characteristic d‖ and O 2p-V 3d hybridization characteristic πpd, σpd bands vary in binding energy position and density of state distributions. The XAS reveals a temperature-dependent reversible energy shift at the V LⅢ-edge. The PES and XAS results imply a synergetic energy position shift of occupied valence bands and unoccupied conduction band states across the phase transition. A joint inspection of the PES and XAS results shows that the MIT is not a one-step process, instead it is a process in which a semiconductor phase appears as an intermediate state. The final metallic phase from insulating state is reached through insulator–semiconductor, semiconductor–metal processes, and vice versa. The conventional MIT at around the TMIT=67 ℃ is actually a semiconductor–insulator transformation point.
|
Received: 07 March 2013
Revised: 14 April 2013
Accepted manuscript online:
|
PACS:
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
78.70.Dm
|
(X-ray absorption spectra)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the Natural Science Foundation of the Chinese Academy of Sciences (Grant No. H91G750Y21). |
Corresponding Authors:
Kurash Ibrahim
E-mail: kurash@ihep.ac.cn
|
Cite this article:
Emin Muhemmed (伊明江·买买提), Abduleziz Ablat (阿布都艾则孜·阿布来提), Wu Rui (吴蕊), Wang Jia-Ou (王嘉鸥), Qian Hai-Jie (钱海杰), Kurash Ibrahim (奎热西·依布拉欣) In situ electronic structural study of VO2 thin film across the metal–insulator transition 2013 Chin. Phys. B 22 127103
|
[1] |
Morin F G 1959 Phys. Rev. Lett. 3 34
|
[2] |
Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
|
[3] |
Driscoll T, Palit S, Qazilbash M M, Brehm M, Keilmann F, Chae B G, Yun S J, Kim H T, Cho S Y, Jokerst N M, Smith D R, and Basov D N 2008 Appl. Phys. Lett. 93 024101
|
[4] |
Chen C H and Zhou Z P 2007 Appl. Phys. Lett. 91 011107
|
[5] |
Wei J, Wang Z H, Chen W and Cobden D H 2009 Nat. Nanotechnol. 4 420
|
[6] |
Wang T, Jiang Y D, Yu H, Wu Z M and Zhao H N 2011 Chin. Phys. B 20 038101
|
[7] |
Wang Z M, Ma Y L, Zhang F J and Feng Y D 2007 Chin. Phys. 16 1704
|
[8] |
Wang H C, Yi X J, Lai J J and Li Y 2005 Chin. Phys. Lett. 22 1746
|
[9] |
Manning T D, Parkin I P, Pemble M E, Sheel D and Vernardou D 2004 Chem. Mater. 16 744
|
[10] |
Wei X Y, Hu M, Zhang K L, Wang F, Zhao J S and Miao Y P 2013 Chin. Phys. B 22 037201
|
[11] |
Goodenough J B 1971 J. Solid State Chem. 3 490
|
[12] |
Zylbersztejn A and Mott N F 1975 Phys. Rev. B 11 4383
|
[13] |
Biermann S, Poteryaev A, Lichtenstein A I and Georges A 2005 Phys. Rev. Lett. 94 026404
|
[14] |
Kwork R, XPS peak version 4.1, a software was used to analyze the XPS spectra, http://www.phy.cuhk.edu.hk/surface/XPSPEAK/
|
[15] |
Eguchi R, Taguchi M, Matsunami M, Horiba K, Yamamoto K, Ishida Y, Chainani A, Takata Y, Yabashi M, Miwa D, Nishino Y, Tamasaku K, Ishikawa K, Senba Y, Ohashi H, Muraoka Y, Hiroi Z and Shin S 2008 Phys. Rev. B 78 075115
|
[16] |
Kurmaev E Z, Cherkashenko V M, Yarmoshenko Y M, Bartkowski S, Postnikov A V, Neumann N, Duda L C, Guo J H, Nordgren J, Perelyaev V A and Reichelt W 1998 J. Phys.: Condens. Matter 10 4081
|
[17] |
Fujimori A, Hase I, Namatame H, Fujishima Y, Tokura Y, Eisaki H, Uchida S, Takegahara K and de Groot F M F 1992 Phys. Rev. Lett. 69 1796
|
[18] |
Shin S, Suga S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K and Kachi S 1990 Phys. Rev. B 41 4993
|
[19] |
Liu L, Cao F, Yao T, Xu Y, Zhou M, Qu B Y, Pan B C, Wu C Z, Wei S Q and Xie Y 2012 New J. Chem. 36 619
|
[20] |
Cavalleri A, Rini M, Chong H H W, Fourmaux S, Glover T E, Heimann P A, Kieffer J C and Schoenlein R W 2005 Phys. Rev. Lett. 95 067405
|
[21] |
Ruzmetov D, Senanayake S D and Ramanathan S 2007 Phys. Rev. B 75 195102
|
[22] |
Koethe T C, Hu Z, Haverkort M W, Schüßler-Langeheine C, Venturini F, Brookes N B, Tjernberg O, Reichelt W, Hsieh H H, Lin H J, Chen C T and Tjeng L H 2006 Phys. Rev. Lett. 97 116402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|