Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 124201    DOI: 10.1088/1674-1056/22/12/124201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controlling the photoluminescence spectroscopy of quinacrine dihydrochloride by SiO2 inverse opal photonic crystal

Li Chao-Rong (李超荣), Yang Zhao-Ting (杨诏婷), Xu Qing (徐庆), Dong Wen-Jun (董文钧)
Department of Physics and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  Manipulation of the photoluminescence spectra of light-emitting materials doped in three-dimensional (3D) inverse opal photonic crystals is investigated. Quinacrine dihydrochloride molecules doped highly ordered SiO2 inverse opal is successfully synthesized by co-assembly combined with double-substrate vertical infiltrate method. The quinacrine dihydrochloride-doped and-undoped SiO2 inverse opals each exhibit an apparent photonic band gap (PBG) in the visible light region. Significant suppression of the emission is observed when the PBG is overlapped with the quinacrine dihydrochloride emission bands. The mechanism of suppression effect of PBG in inverse opal on the fluorescence intensity of quinacrine dihydrochloride molecules is studied.
Keywords:  inverse opals      photonic stop band      photoluminescence  
Received:  16 January 2013      Revised:  13 March 2013      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  78.66.-w (Optical properties of specific thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91122022 and 51172209) and the Natural Science Foundation of Zhejiang Province of of China (Grant No. LR12E02001).
Corresponding Authors:  Li Chao-Rong     E-mail:  crli@zstu.edu.cn

Cite this article: 

Li Chao-Rong (李超荣), Yang Zhao-Ting (杨诏婷), Xu Qing (徐庆), Dong Wen-Jun (董文钧) Controlling the photoluminescence spectroscopy of quinacrine dihydrochloride by SiO2 inverse opal photonic crystal 2013 Chin. Phys. B 22 124201

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Schroden R C, Al-Daous M and Stein A 2001 Chem. Mater. 13 2945
[4] Yablonovitch E 1993 J. Opt. Soc. Am. B 10 283
[5] Joannopoulos J D, Villeneuve P R and Fan S H 1997 Nature 386 143
[6] Yablonovitch E, Everitt H O and Higgins J A 1999 J. Lightwave Technol. 17 1928
[7] Schroden R C, Al-Daous M, Blanford C F and Stein A 2002 Chem. Mater. 14 3305
[8] Yan H T, Wang M, Ge Y X and Yu P 2009 Chin. Phys. B 18 2389
[9] Drexhage K H 1970 J. Lumin. 12 693
[10] Kleppner D 1981 Phys. Rev. Lett. 47 233
[11] Hatton B, Mishchenko L, Davis S, Sandhage K H and Aizenberg J 2010 Proc. Natl. Acad. Sci. 107 10354
[12] Arienzo M D, Armelao L, Cacciamani A, Mari C M, Polizzi S, Ruffo R, Scotti R, Testino A, Wahba L and Morazzoni F 2010 Chem. Mater. 22 4083
[13] Arsenault A C, Clark T J, Freymann G V, Cademartiri L, Sapienza R, Bertolotti J, Vekris E, Wong S, Kitaev V, Manners I, Wang R Z, John S, Wiersma D and Ozin G A 2006 Nat. Mater. 5 179
[14] Yeo S J, Kang H, Kim Y H, Han S and Yoo P J 2012 Appl. Mater. Interfaces 4 2107
[15] Yang Z W, Yan L, Yan D, Song Z G, Zhou D C, Yin Z Y and Qiu J B 2011 Am. Ceram. Soc. 94 2308
[16] Bechger L, Lodahl P and Vos W L 2005 J. Phys. Chem. B 109 9980
[17] Lee S J, Rao A S, Shin Y H, Chung H J and Huh Y 2013 J. Mol. Histol. 44 241
[18] Choi H K, Kim M H, Im S H and Park O O 2009 Adv. Funct. Mater. 19 1594
[19] Zhu Y S, Xu W, Zhang H Z, Wang W, Xu S and Song H W 2012 J. Phys. Chem. C 116 2297
[20] Aguirre C I, Reguera E and Stein A 2010 Adv. Funct. Mater. 20 2565
[21] Qu X S, Yang H K, Moon B K, Choi B C, Jeong J H and Kim K H 2010 J. Phys. Chem. C 114 19891
[22] Zhao L J, Yang J, Xu J J, Huang H and Zhang G Y 2001 Chin. Phys. Lett. 18 1205
[23] Galstyan A G, Raikh M E and Vardeny Z V 2000 Phys. Rev. B 62 1780
[24] Ródenas A, Zhou G Y, Jaque D and Gu M 2009 Adv. Mater. 21 3526
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[11] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[12] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[13] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[14] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!