Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 113401    DOI: 10.1088/1674-1056/22/11/113401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Product polarization and mechanism of Li+HF(v=0, j=0)→LiF (v’, j’)+H collision reaction

Yue Xian-Fang (岳现房)
Department of Physics and Information Engineering, Jining University, Jining 273155, China
Abstract  A state-to-state dynamics analysis for the Li+HF (v = 0, j = 0)→LiF (v’, j’)+H collision reaction has been performed through quasiclassical trajectory (QCT) calculations. It is found that the differential cross section (DCS) of the LiF products from the title reaction is preferentially backward scattering for v’=0, yet forward scattering for v’=1 and 2. For v’=3, the DCS exhibits forward, backward, and sideways scatterings. The variation of the internuclear distances and angles along the propagation time reveals that more than 99.08% of reaction trajectories undergo the direct reaction mechanism. The values of the polarization parameters a1-{1} and a0{2} demonstrate that the product rotational angular moment j’ is not only aligned perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. These product polarization results agree well with the recent quantum mechanical studies. The mechanism of these results was proposed and discussed in detail.
Keywords:  product polarization      collision reaction      state-to-state resolved differential cross section      quasi-classical trajectory  
Received:  26 March 2013      Revised:  28 May 2013      Accepted manuscript online: 
PACS:  34.50.Pi  
  34.50.Lf (Chemical reactions)  
  82.20.Bc (State selected dynamics and product distribution)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21003062) and the Foundation for Outstanding Yong Scientist of Shandong Province, China (Grant No. BS2012SF002).
Corresponding Authors:  Yue Xian-Fang     E-mail:  xfyuejnu@gmail.com

Cite this article: 

Yue Xian-Fang (岳现房) Product polarization and mechanism of Li+HF(v=0, j=0)→LiF (v’, j’)+H collision reaction 2013 Chin. Phys. B 22 113401

[1] Taylor E H and Datz S 1955 J. Chem. Phys. 23 1711
[2] Becker C H, Casavecchia P, Tiedemann P W, Valentini J J and Lee Y T 1980 J. Chem. Phys. 73 2833
[3] Loesch H J and Stienkemeier F 1993 J. Chem. Phys. 98 9570
[4] Höbel O, Bobbenkamp R, Paladini A, Russo A and Loesch H J 2004 Phys. Chem. Chem. Phys. 6 2198
[5] Bobbenkamp R, Loesch H J, Mudrich M and Stienkemeier F 2011 J. Chem. Phys. 135 204306
[6] Aoiz F J, Verdasco E, Rábanos V S, Loesch H J, Menéndez M and Stienkemeier F 2000 Phys. Chem. Chem. Phys. 2 541
[7] Bobbenkamp R, Paladini A, Russo A, Loesch H J, Menéndez M, Verdasco E, Aoiz F J and Werner H J 2005 J. Chem. Phys. 122 244304
[8] Zanchet A, Roncero O, González-Lezana T, Rodríguez-López A, Aguado A, Sanz-Sanz C and Gómez-Carrasco S 2009 J. Phys. Chem. A 113 14488
[9] Hudson A J, Oh H B, Polanyi J C and Piecuch P 2000 J. Chem. Phys. 113 9897
[10] Balint-Kurti G G and Yardley R N 1977 Faraday Discuss. Chem. Soc. 62 77
[11] Zeiri Y and Shapxiro M 1978 Chem. Phys. 31 217
[12] Shapiro M and Zeiri Y 1979 J. Chem. Phys. 70 5264
[13] Chen M M L and Schaefer H F 1980 J. Chem. Phys. 72 4376
[14] Carter S and Murrell J N 1980 Mol. Phys. 41 567
[15] Parker G A, Laganà A, Crocchianti S and Pack R T 1995 J. Chem. Phys. 102 1238
[16] Aguado A, Suárez C and Paniagua M 1995 Chem. Phys. 201 107
[17] Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 106 1013
[18] Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 107 10085
[19] Burcl R, Piecuch P, Špirko V and Bludský O 2000 Int. J. Quantum Chem. 80 916
[20] Jasper A W, Hack M D, Truhlar D G and Piecuch P 2002 J. Chem. Phys. 116 8353
[21] Aguado A, Paniagua M, Sanz C and Roncero O 2003 J. Chem. Phys. 119 10088
[22] Li S J, Shi Y, Xie T X and Jin M X 2012 Chin. Phys. B 21 013401
[23] Tan R S, Liu X G and Hu M 2012 Chin. Phys. Lett. 29 123101
[24] Alvari?no J M, Casavecchia P, Gervasi O and Laganà A 1982 J. Chem. Phys. 77 6341
[25] Jasper AW, HackM D, Chakraborty A and Truhlar D G 2001 J. Chem. Phys. 115 7945
[26] Parker G A, Laganà A, Crocchianti S and Pack R T 1995 J. Chem. Phys. 102 1238
[27] Wei L, Jasper A W and Truhlar D G 2003 J. Phys. Chem. A 107 7236
[28] Laganà A, Bolloni A and Crocchianti S 2000 Phys. Chem. Chem. Phys. 2 535
[29] Baer M, Last I and Loesch H J 1994 J. Chem. Phys. 101 9648
[30] Skouteris D, Crocchianti S and Laganà A 2007 Chem. Phys. Lett. 440 1
[31] Laganà A, Bolloni A, Crocchianti S and Parker G A 2000 Chem. Phys. Lett. 324 466
[32] Zhu W, Wang D and Zhang J Z H 1997 Theor. Chem. Acc. 96 31
[33] Xie D Q, Li S M and Guo H 2002 J. Chem. Phys. 116 6391
[34] Paniagua M, Aguado A, Lara M and Roncero O 1999 J. Chem. Phys. 111 6712
[35] Lara M, Aguado A, Paniagua M and Roncero O 2000 J. Chem. Phys. 113 1781
[36] Aguado A, Lara M, Paniagua M and Roncero O 2001 J. Chem. Phys. 114 3440
[37] Gómez-Carrasco S and Roncero O 2006 J. Chem. Phys. 125 054102
[38] Sanz C, Roncero O, PaniaguaMand Aguado A 2002 Chem. Phys. Lett. 351 295
[39] González-Sánchez L, Vasyutinskii O, Zanchet A, Sanz-Sanz C and Roncero O 2011 Phys. Chem. Chem. Phys. 13 13656
[40] Paniagua M, Aguado A, Lara M and Roncero O 1998 J. Chem. Phys. 109 2971
[41] Paniagua M, Aguado A, Lara M and Roncero O 1999 J. Chem. Phys. 111 6712
[42] Burcl R, Piecuch P, Špirko V and Bludský O 2002 J. Mol. Struct. Theochem. 591 151
[43] Mestdagh J M, Soep B, Gaveau M A and Visticot J P 2003 Int. Rev. Phys. Chem. 22 285
[44] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[45] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[46] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[47] Zhang X and Han K L 2006 Int. J. Quant. Chem. 106 1815
[48] Li H, Zheng B, Ying J Q and Meng Q T 2011 Chin. Phys. B 20 123401
[49] Liu Y F, He X H, Shi D H and Sun J F 2011 Chin. Phys. B 20 078201
[50] Zhu T, Hu G D, Chen J Z, Liu X G and Zhang Q G 2010 Chin. Phys. B 19 083402
[51] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
[52] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[53] Kuntz P J, Nemetz E and Polanyi J C 1969 J. Chem. Phys. 50 4607
[54] Kuntz P J, Mok E H and Polany J C 1969 J. Chem. Phys. 50 4623
[1] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[2] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[3] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[4] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[5] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[6] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[7] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[8] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[9] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[10] Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星). Chin. Phys. B, 2014, 23(12): 123402.
[11] Theoretical study of stereodynamics for the N+H2/D2/T2 reactions
Li Yong-Qing (李永庆), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Chi Xiao-Lin (迟晓琳), Ding Yong (丁勇), Ma Feng-Cai (马凤才). Chin. Phys. B, 2014, 23(12): 123401.
[12] Stereodynamics in reaction O(1D)+CH4→OH+CH3
Sha Guang-Yan (沙广燕), Yuan Jiu-Chuang (袁久闯), Meng Chang-Gong (孟长功), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2014, 23(1): 018202.
[13] The reagent vibrational excitation effect on the stereodynamics of the reaction O(1D)+HBr→OH+Br
Zhang Ying-Ying (张莹莹), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(8): 083402.
[14] Stereodynamics study of the exchange reaction O(3P) + CH4→H + OCH3
Cheng Da-Hai (程大海), Yuan Jiu-Chuang (袁久闯), Yang Tian-Gang (杨天罡), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2013, 22(6): 068202.
[15] A theoretical study of the stereodynamics on the abstraction reactions H/D+HS/DS
Xu Guo-Liang (徐国亮), Liu Pei (刘培), Liu Yan-Lei (刘彦磊), Liu Yu-Fang (刘玉芳), Yuan Wei (袁伟), Zhang Xian-Zhou (张现周). Chin. Phys. B, 2013, 22(6): 068203.
No Suggested Reading articles found!