|
|
Efficient electronic entanglement concentration assisted by single mobile electrons |
Sheng Yu-Bo (盛宇波)a b, Zhou Lan (周澜)c |
a Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; b Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China; c College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing.
|
Received: 18 March 2013
Revised: 01 April 2013
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104159), the Natural Science Research Project of Universities of Jiangsu Province, China (Grant No. 13KJB140010), and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China. |
Corresponding Authors:
Sheng Yu-Bo
E-mail: shengyb@njupt.edu.cn
|
Cite this article:
Sheng Yu-Bo (盛宇波), Zhou Lan (周澜) Efficient electronic entanglement concentration assisted by single mobile electrons 2013 Chin. Phys. B 22 110303
|
[1] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
|
[2] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[3] |
Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
|
[4] |
Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
|
[5] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[6] |
Deng F G and Long G L 2003 Phys. Rev. A 68 042315
|
[7] |
Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
|
[8] |
Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[9] |
Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
|
[10] |
Xiao L, Long G L, Deng F G and Pan JW2004 Phys. Rev. A 69 052307
|
[11] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[12] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[13] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
|
[14] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[15] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[16] |
Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
|
[17] |
Zhang X L, Zhang Y X and Wei H 2009 Chin. Phys. B 18 435
|
[18] |
Liu W J, Chen H W, Ma T H, Li Z Q, Liu Z H and Hu W B 2009 Chin. Phys. B 18 4105
|
[19] |
Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
|
[20] |
Gao T, Yan F L and Wang Z X 2005 Chin. Phys. B 14 893
|
[21] |
Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
|
[22] |
Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
|
[23] |
Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
|
[24] |
Deng F G, Long G L and Chen P 2006 Chin. Phys. B 15 2228
|
[25] |
Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
|
[26] |
Deng F G, Liu X S, Ma Y J, Xiao L and Long G L 2002 Chin. Phys. Lett. 19 893
|
[27] |
Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
|
[28] |
Gu B, Li C Q and Chen Y L 2009 Chin. Phys. B 18 2137
|
[29] |
Gu B, Mu L L, Ding L G, Zhang C Y and Li C Q 2010 Opt. Commun. 283 3099
|
[30] |
Gu B, Huang Y G, Fang X and Chen Y L 2011 Commun. Theor. Phys. 56 659
|
[31] |
Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
|
[32] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[33] |
Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
|
[34] |
Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
|
[35] |
Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
|
[36] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
|
[37] |
Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
|
[38] |
Sheng Y B, Deng F G and Zhou H Y 2010 Quant. Inf. Comput. 10 272
|
[39] |
Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
|
[40] |
Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
|
[41] |
Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 J. Opt. Soc. Am. B 30 71
|
[42] |
Zhou L, Sheng Y B, ChengWW, Gong L Y and Zhao SM2013 Quantum Inf. Process. 12 1307
|
[43] |
Sheng Y B and Zhou L 2013 J. Opt. Soc. Am. B 30 678
|
[44] |
Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
|
[45] |
Sheng Y B, Zhou L,Wang L and Zhao SM2013 Quantum Inf. Process. 12 1885
|
[46] |
Gu B 2012 J. Opt. Soc. Am. B 29 1685
|
[47] |
Wang C 2012 Phys. Rev. A 86 012323
|
[48] |
Deng F G 2012 Phys. Rev. A 85 022311
|
[49] |
Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
|
[50] |
Cao C, Wang C and Zhang R 2012 Chin. Phys. B 21 110305
|
[51] |
Wang H F, Zhang S and Yeon K H 2010 J. Opt. Soc. Am. B 27 2159
|
[52] |
Wang H F, Sun L L, Zhang S and Yeon K H 2012 Quantum Inf. Process. 11 431
|
[53] |
Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
|
[54] |
Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
|
[55] |
Costa A T, Jr Bose S and Omar Y 2006 Phys. Rev. Lett. 96 230501
|
[56] |
Ciccarello F, Paternostro M, Kim M S and Palma G M 2008 Phys. Rev. Lett. 100 150501
|
[57] |
Ciccarello F, Palma G M, Zarcone M, Omar Y and Vieira V R 2006 New J. Phys. 8 214
|
[58] |
Habgood M, Jefferson J H and Briggs G A D 2008 Phys. Rev. B 77 195308
|
[59] |
Trauzettel B, Jordan A N, Beenakker C W J and Büttiker M 2006 Phs. Rev. B 73 235331
|
[60] |
Li T, Ren B C, Wei H R, Hua M and Deng F G 2013 Quantum Inf. Process. 12 855
|
[61] |
Ren B C, Hua M, Li T, Du F F and Deng F G 2012 Chin. Phys. B 21 090303
|
[62] |
Zhou L 2013 Quantum Inf. Process. 12 2087
|
[63] |
Ionicioiu R 2007 Phys. Rev. A 75 032339
|
[64] |
Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
|
[65] |
Ziberberg O, Braunecker B and Loss D 2008 Phys. Rev. A 77 012327
|
[66] |
Matsuzaki Y and Jefferson J H 2011 arxiv:1102.3121
|
[67] |
Buks E, Schuster R, Heiblum M, Mahalu D and Umansky V 1998 Nature 391 871
|
[68] |
Elzerman J M, Hanson R, van Willems Beveren, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
|
[69] |
Shaner E A and Lyon S A 2004 Phys. Rev. Lett. 93 037402
|
[70] |
Ionicioiu R and D’Amico I 2003 Phys. Rev. B 67 041307
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|