Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110303    DOI: 10.1088/1674-1056/22/11/110303
GENERAL Prev   Next  

Efficient electronic entanglement concentration assisted by single mobile electrons

Sheng Yu-Bo (盛宇波)a b, Zhou Lan (周澜)c
a Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
b Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China;
c College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing.
Keywords:  quantum communication      entanglement      entanglement concentration  
Received:  18 March 2013      Revised:  01 April 2013      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104159), the Natural Science Research Project of Universities of Jiangsu Province, China (Grant No. 13KJB140010), and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Sheng Yu-Bo     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Sheng Yu-Bo (盛宇波), Zhou Lan (周澜) Efficient electronic entanglement concentration assisted by single mobile electrons 2013 Chin. Phys. B 22 110303

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[4] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[7] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[8] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[9] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[10] Xiao L, Long G L, Deng F G and Pan JW2004 Phys. Rev. A 69 052307
[11] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[12] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[13] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
[14] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[15] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[16] Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
[17] Zhang X L, Zhang Y X and Wei H 2009 Chin. Phys. B 18 435
[18] Liu W J, Chen H W, Ma T H, Li Z Q, Liu Z H and Hu W B 2009 Chin. Phys. B 18 4105
[19] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[20] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. B 14 893
[21] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[22] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
[23] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
[24] Deng F G, Long G L and Chen P 2006 Chin. Phys. B 15 2228
[25] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
[26] Deng F G, Liu X S, Ma Y J, Xiao L and Long G L 2002 Chin. Phys. Lett. 19 893
[27] Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
[28] Gu B, Li C Q and Chen Y L 2009 Chin. Phys. B 18 2137
[29] Gu B, Mu L L, Ding L G, Zhang C Y and Li C Q 2010 Opt. Commun. 283 3099
[30] Gu B, Huang Y G, Fang X and Chen Y L 2011 Commun. Theor. Phys. 56 659
[31] Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
[32] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[33] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[34] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[35] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[36] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[37] Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
[38] Sheng Y B, Deng F G and Zhou H Y 2010 Quant. Inf. Comput. 10 272
[39] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[40] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[41] Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 J. Opt. Soc. Am. B 30 71
[42] Zhou L, Sheng Y B, ChengWW, Gong L Y and Zhao SM2013 Quantum Inf. Process. 12 1307
[43] Sheng Y B and Zhou L 2013 J. Opt. Soc. Am. B 30 678
[44] Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
[45] Sheng Y B, Zhou L,Wang L and Zhao SM2013 Quantum Inf. Process. 12 1885
[46] Gu B 2012 J. Opt. Soc. Am. B 29 1685
[47] Wang C 2012 Phys. Rev. A 86 012323
[48] Deng F G 2012 Phys. Rev. A 85 022311
[49] Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
[50] Cao C, Wang C and Zhang R 2012 Chin. Phys. B 21 110305
[51] Wang H F, Zhang S and Yeon K H 2010 J. Opt. Soc. Am. B 27 2159
[52] Wang H F, Sun L L, Zhang S and Yeon K H 2012 Quantum Inf. Process. 11 431
[53] Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
[54] Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
[55] Costa A T, Jr Bose S and Omar Y 2006 Phys. Rev. Lett. 96 230501
[56] Ciccarello F, Paternostro M, Kim M S and Palma G M 2008 Phys. Rev. Lett. 100 150501
[57] Ciccarello F, Palma G M, Zarcone M, Omar Y and Vieira V R 2006 New J. Phys. 8 214
[58] Habgood M, Jefferson J H and Briggs G A D 2008 Phys. Rev. B 77 195308
[59] Trauzettel B, Jordan A N, Beenakker C W J and Büttiker M 2006 Phs. Rev. B 73 235331
[60] Li T, Ren B C, Wei H R, Hua M and Deng F G 2013 Quantum Inf. Process. 12 855
[61] Ren B C, Hua M, Li T, Du F F and Deng F G 2012 Chin. Phys. B 21 090303
[62] Zhou L 2013 Quantum Inf. Process. 12 2087
[63] Ionicioiu R 2007 Phys. Rev. A 75 032339
[64] Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
[65] Ziberberg O, Braunecker B and Loss D 2008 Phys. Rev. A 77 012327
[66] Matsuzaki Y and Jefferson J H 2011 arxiv:1102.3121
[67] Buks E, Schuster R, Heiblum M, Mahalu D and Umansky V 1998 Nature 391 871
[68] Elzerman J M, Hanson R, van Willems Beveren, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
[69] Shaner E A and Lyon S A 2004 Phys. Rev. Lett. 93 037402
[70] Ionicioiu R and D’Amico I 2003 Phys. Rev. B 67 041307
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!