|
|
Minimum detection efficiency for the loophole-free confirmation of quantum contextuality |
Xiang Yang (向阳)a, Hong Fang-Yu (洪方昱)b |
a School of Physics and Electronics, Henan University, Kaifeng 475001, China;
b Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Hangzhou 310018, China |
|
|
Abstract Klyachko–Can–Binicio?lu–Shumovsky (KCBS) inequality is a Bell-like inequality, the violation of which can be used to confirm the existence of quantum contextuality. However, the imperfection of detection efficiency may cause the so-called loophole in actual KCBS’s experiments. We derive an alternative KCBS inequality to deal with the loophole in actual KCBS’s experiments. We prove that if the experimental data violate this KCBS inequality, the loophole-free violation of the original KCBS inequality will occur. We show that the minimum detection efficiency needed for a loophole-free violation of the KCBS inequality is about 0.9738.
|
Received: 13 June 2013
Revised: 15 August 2013
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11005031) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110314). |
Corresponding Authors:
Xiang Yang
E-mail: njuxy@sina.com
|
Cite this article:
Xiang Yang (向阳), Hong Fang-Yu (洪方昱) Minimum detection efficiency for the loophole-free confirmation of quantum contextuality 2013 Chin. Phys. B 22 110302
|
[1] |
Klyachko A A, Can M A, Binicioğlu S and Shumovsky A S 2008 Phys. Rev. Lett. 101 020403
|
[2] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
|
[3] |
Chen J L, Su H Y, Wu C, Deng D L, Cabello A, Kwek L C and Oh C H 2013 Phys. Rev. A 87 022109
|
[4] |
Su H Y, Chen J L, Wu C, Yu S and Oh C H 2012 Phys. Rev. A 85 052126
|
[5] |
Yu S and Oh C H 2012 Phys. Rev. Lett. 108 030402
|
[6] |
Zhang X, Um M, Zhang J, An S, Wang Y, Deng D L, Shen C, Duan L M and Kim K 2013 Phys. Rev. Lett. 110 070401
|
[7] |
Bell J S 1964 Physics 1 195
|
[8] |
Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
|
[9] |
Mermin N D 1990 Phys. Rev. Lett. 65 1838
|
[10] |
Cabello A, Filipp S, Rauch H and Hasegawa Y 2008 Phys. Rev. Lett. 100 130404
|
[11] |
Cabello A 2008 Phys. Rev. Lett. 101 210401
|
[12] |
Spekkens R W, Buzacott D H, Keehn A J, Toner B and Pryde G J 2009 Phys. Rev. Lett. 102 010401
|
[13] |
Badziag P, Bengtsson I, Cabello A and Pitowsky I 2009 Phys. Rev. Lett. 103 050401
|
[14] |
Aspect A, Dalibard J and Roger G 1982 Phys. Rev. Lett. 49 1804
|
[15] |
Tittel W, Brendel J, Zbinden H and Gisin N 1998 Phys. Rev. Lett. 81 3563
|
[16] |
Weihs G, Jennewein T, Simon C, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 81 5039
|
[17] |
Rowe M A, Kielpinski D, Meyer V, Sackett C A, Itano W M, Monroe C and Wineland D J 2001 Nature 409 791
|
[18] |
Matsukevich D N, Maunz P, Moehring D L, Olmschenk S and Monroe C 2008 Phys. Rev. Lett. 100 150404
|
[19] |
Zhou B Y, Deng L, Duan Y F, Yu L and Li G X 2012 Chin. Phys. B 21 090302
|
[20] |
Lapkiewicz R, Li P, Schaeff C, Langford N K, Ramelow S, Wieniak M and Zeilinger A 2011 Nature 474 490
|
[21] |
Kirchmair G, Zähringer F, Gerritsma R, Kleinmann M, Gühne O, Cabello A, Blatt R and Roos C F 2009 Nature 460 494
|
[22] |
Zu C, Wang Y X, Deng D L, Chang X Y, Liu K, Hou P Y, Yang H X and Duan L M 2012 Phys. Rev. Lett. 109 150401
|
[23] |
Moussa O, Ryan C A, Cory D G and Laflamme R 2010 Phys. Rev. Lett. 104 160501
|
[24] |
Amselem E, Danielsen L E, Lopez-Tarrida A J, Portillo J R, Bourennane M and Cabello A 2012 Phys. Rev. Lett. 108 200405
|
[25] |
Kong X, Shi M, Shi F, Wang P, Huang P, Zhang Q, Ju C, Duan C, Yu S and Du J 2012 arXiv:1210.0961 [quant-ph]
|
[26] |
Barrett J and Gisin N 2011 Phys. Rev. Lett. 106 100406
|
[27] |
Hall M J W 2010 Phys. Rev. Lett. 105 250404
|
[28] |
Hall M J M 2011 Phys. Rev. A 84 022102
|
[29] |
Sadiq M, Badziag P, Bourennane M and Cabello A 2013 Phys. Rev. A 87 012128
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|