CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The metamaterial analogue of electromagnetically induced transparency by dual-mode excitation of a symmetric resonator |
Shao Jian (邵健)a, Li Jie (李杰)a, Li Jia-Qi (李家奇)a b, Wang Yu-Kun (王昱坤)a, Dong Zheng-Gao (董正高)a b, Lu Wei-Bing (陆卫兵)b, Zhai Ya (翟亚)a |
a Physics Department, Southeast University, Nanjing 211189, China;
b Research Center of Converging Technology, Southeast University, Nanjing 210096, China |
|
|
Abstract Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is attributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large group index accompanied with a sharp EIT-like transparency window offers potential applications for slowing down light and sensing.
|
Received: 10 March 2013
Revised: 17 April 2013
Accepted manuscript online:
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174051, 11004026, 11074034, and 61271057), the National Basic Research Program of China (Grant No. 2010CB923401), and the Youth Study Plan from Southeast University. |
Corresponding Authors:
Dong Zheng-Gao
E-mail: zgdong@seu.edu.cn
|
Cite this article:
Shao Jian (邵健), Li Jie (李杰), Li Jia-Qi (李家奇), Wang Yu-Kun (王昱坤), Dong Zheng-Gao (董正高), Lu Wei-Bing (陆卫兵), Zhai Ya (翟亚) The metamaterial analogue of electromagnetically induced transparency by dual-mode excitation of a symmetric resonator 2013 Chin. Phys. B 22 107804
|
[1] |
Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
|
[2] |
Papasimakis N, Fedotov V A, Zheludev N I and Prosvirnin S L 2008 Phys. Rev. Lett. 101 253903
|
[3] |
Tassin P, Zhang L, Koschny T, Economou E N and Soukoulis C M 2009 Phys. Rev. Lett. 102 053901
|
[4] |
Tassin P, Zhang L, Koschny T, Economou E N and Soukoulis C M 2009 Opt. Express 17 5595
|
[5] |
Zhang J, Xiao S, Jeppesen C, Kristensen A and Mortensen N A 2010 Opt. Express 18 17187
|
[6] |
Yannopapas V, Paspalakis E and Vitanov N V 2009 Phys. Rev. B 80 035104
|
[7] |
Hu Y T, Xiao X, Li Z Y, Li Y T, Fan Z C, Han W H, Yu Y D and Yu J Z 2011 Chin. Phys. B 20 074208
|
[8] |
Tanji-Suzuki H, Chen W, Landig R, Simon J and Vuletic V 2011 Science 333 1266
|
[9] |
Ma J Y, Xu C, Liu S J, Zhang D W, Jin Y X, Fan Z X and Shao J D 2009 Chin. Phys. B 18 1029
|
[10] |
Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N and Zhang X 2010 Appl. Phys. Lett. 97 114101
|
[11] |
Zhao H J 2012 Chin. Phys. B 21 087104
|
[12] |
Singh R, Al-Naib I A I, Yang Y, Chowdhury D R and Cao W 2011 Appl. Phys. Lett. 99 201107
|
[13] |
Lu X, Shi J, Liu R and Guan C 2012 Opt. Express 20 17581
|
[14] |
Jin X R, Lu Y, Park J, Zheng H, Gao F, Lee Y, Rhee J Y, Kim L W, Cheong H and Jang W H 2012 J. Appl. Phys. 111 073101
|
[15] |
Liu X, Gu J, Singh R, Ma Y, Zhu J, Tian Z, He M, Han J and Zhang W 2012 Appl. Phys. Lett. 100 131101
|
[16] |
Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J and Zhang W 2012 Nat. Commun. 3 1151
|
[17] |
Li Z, Ma Y, Huang R, Singh R, Gu J, Tian Z, Han J and Zhang W 2011 Opt. Express 19 8912
|
[18] |
Zhang L, Tassin P, Koschny T, Kurter C, Anlage S M and Soukoulis C M 2010 Appl. Phys. Lett. 97 241904
|
[19] |
Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
|
[20] |
Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C and Giessen H 2010 Nano Lett. 10 1103
|
[21] |
Wu P C, Chen W T, Yang K Y, Hsiao C T, Sun G, Liu A Q, Zheludev N I and Tsai D P 2012 Nanophotonics 1 131
|
[22] |
Duan X, Chen S, Yang H, Cheng H, Li J, Liu W, Gu C and Tian J 2012 Appl. Phys. Lett. 101 143105
|
[23] |
Shao J, Li J Q, Li J, Wang Y K, Dong Z G, Chen P, Wu R X and Zhai Y 2013 Appl. Phys. Lett. 102 034106
|
[24] |
Jin X R, Park J, Zheng H, Lee S, Lee Y, Rhee J Y, Kim K W, Cheong H S and Jang W H 2011 Opt. Express 19 21652
|
[25] |
Su X R, Zhang Z S, Zhang L H, Li Q Q, Chen C C, Yang Z J and Wang Q Q 2010 Appl. Phys. Lett. 96 043113
|
[26] |
Singh R, Rockstuhl C, Lederer F and Zhang W 2009 Phys. Rev. B 79 085111
|
[27] |
Dong Z G, Liu H, Xu M X, Li T, Wang S M, Cao J X, Zhu S N and Zhang X 2010 Opt. Express 18 22412
|
[28] |
Li D, Qin L, Xiong X, Peng R W, Hu Q, Ma G B, Zhou H S and Wang M 2011 Opt. Express 19 22942
|
[29] |
Dong Z G, Li J Q, Shao J, Yu X Q, Wang Y K and Zhai Y 2013 Chin. Phys. B 22 044209
|
[30] |
Taflove A and Hagness S C 2005 Computational Electrodynamics, 3rd edn. (Boston: Artech House)
|
[31] |
Yin X G, Huang C P, Wang Q J, Huang W X, Zhou L, Zhang C and Zhu Y Y 2011 Opt. Express 19 10485
|
[32] |
Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
|
[33] |
Zentgraf T, Zhang S, Oulton R F and Zhang X 2009 Phys. Rev. B 80 195415
|
[34] |
Tang B, Dai L and Jiang C 2011 Opt. Express 19 628
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|